L(s) = 1 | + (−0.580 − 0.814i)2-s + (0.502 − 0.864i)3-s + (−0.326 + 0.945i)4-s + (−0.995 + 0.0919i)6-s + (−0.507 + 0.861i)7-s + (0.959 − 0.282i)8-s + (−0.494 − 0.869i)9-s + (−0.783 + 0.621i)11-s + (0.652 + 0.757i)12-s + (−0.856 + 0.516i)13-s + (0.996 − 0.0868i)14-s + (−0.786 − 0.617i)16-s + (−0.940 + 0.340i)17-s + (−0.421 + 0.906i)18-s + (0.0306 − 0.999i)19-s + ⋯ |
L(s) = 1 | + (−0.580 − 0.814i)2-s + (0.502 − 0.864i)3-s + (−0.326 + 0.945i)4-s + (−0.995 + 0.0919i)6-s + (−0.507 + 0.861i)7-s + (0.959 − 0.282i)8-s + (−0.494 − 0.869i)9-s + (−0.783 + 0.621i)11-s + (0.652 + 0.757i)12-s + (−0.856 + 0.516i)13-s + (0.996 − 0.0868i)14-s + (−0.786 − 0.617i)16-s + (−0.940 + 0.340i)17-s + (−0.421 + 0.906i)18-s + (0.0306 − 0.999i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6145 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.472 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6145 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.472 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5319752965 - 0.3184594073i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5319752965 - 0.3184594073i\) |
\(L(1)\) |
\(\approx\) |
\(0.5685109529 - 0.2999685124i\) |
\(L(1)\) |
\(\approx\) |
\(0.5685109529 - 0.2999685124i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 1229 | \( 1 \) |
good | 2 | \( 1 + (-0.580 - 0.814i)T \) |
| 3 | \( 1 + (0.502 - 0.864i)T \) |
| 7 | \( 1 + (-0.507 + 0.861i)T \) |
| 11 | \( 1 + (-0.783 + 0.621i)T \) |
| 13 | \( 1 + (-0.856 + 0.516i)T \) |
| 17 | \( 1 + (-0.940 + 0.340i)T \) |
| 19 | \( 1 + (0.0306 - 0.999i)T \) |
| 23 | \( 1 + (0.0664 - 0.997i)T \) |
| 29 | \( 1 + (-0.444 + 0.895i)T \) |
| 31 | \( 1 + (-0.719 - 0.694i)T \) |
| 37 | \( 1 + (0.989 - 0.142i)T \) |
| 41 | \( 1 + (-0.946 + 0.321i)T \) |
| 43 | \( 1 + (-0.999 + 0.0255i)T \) |
| 47 | \( 1 + (0.122 - 0.992i)T \) |
| 53 | \( 1 + (0.262 + 0.964i)T \) |
| 59 | \( 1 + (-0.307 + 0.951i)T \) |
| 61 | \( 1 + (0.297 - 0.954i)T \) |
| 67 | \( 1 + (-0.360 - 0.932i)T \) |
| 71 | \( 1 + (0.808 + 0.588i)T \) |
| 73 | \( 1 + (0.934 - 0.355i)T \) |
| 79 | \( 1 + (-0.959 - 0.282i)T \) |
| 83 | \( 1 + (0.277 + 0.960i)T \) |
| 89 | \( 1 + (-0.257 - 0.966i)T \) |
| 97 | \( 1 + (0.831 + 0.555i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.55041401314568534994580488639, −16.99600521110305104013773356768, −16.38669758763412374753001074670, −15.91190823690152927718699264988, −15.30909586428321947040805063284, −14.69914244657928110179524018923, −13.99961508543527597588673673230, −13.42087969000973751459253158234, −12.93306119906143305790631130714, −11.52570619658309596547578573694, −10.88742859179347779527676536171, −10.21760791928908637583349431115, −9.82458876334856559616086329587, −9.2187856905840488391308796009, −8.350596716429191713951060634536, −7.8162067990466725706934399607, −7.27933778521859868513079027860, −6.386244872067486463670417430537, −5.51025372122959945917842107567, −5.047736275729757027832833593115, −4.18180742081836033299138908009, −3.47823476236066734458302064481, −2.62811171900313289700656673900, −1.67025427861072879306518076088, −0.368045378690619827414812590081,
0.421027170833228002698477649000, 1.7458339174978584147630929789, 2.30199848491676097836843164534, 2.66398275502964029221177713854, 3.516102484350772875825796272331, 4.5163441991625161789428567559, 5.217021458954842147290851689876, 6.4122022403937383941477381166, 6.97162310241425966102947095832, 7.585087484388624218922176611382, 8.409763117773822325629833038821, 8.96742561384977022942682541553, 9.44193727508466683434075425542, 10.17496096770014878417455235267, 11.0723162075178658303584474623, 11.7164423408376637194765755703, 12.37243787411230571091325076663, 12.93805893895929074734132829988, 13.20411681259893031740736725535, 14.13369984019420661425548374699, 15.09149535069831728417780685968, 15.382160049173301214974389731432, 16.57845183643142231077052229922, 17.000334394405997554839833815870, 18.00143214487960113419836568395