L(s) = 1 | + (−0.617 + 0.786i)2-s + (−0.859 − 0.511i)3-s + (−0.238 − 0.971i)4-s + (0.932 − 0.360i)6-s + (−0.848 − 0.529i)7-s + (0.911 + 0.412i)8-s + (0.476 + 0.879i)9-s + (0.895 + 0.444i)11-s + (−0.292 + 0.956i)12-s + (0.826 − 0.563i)13-s + (0.940 − 0.340i)14-s + (−0.886 + 0.462i)16-s + (−0.984 − 0.178i)17-s + (−0.985 − 0.168i)18-s + (0.992 + 0.122i)19-s + ⋯ |
L(s) = 1 | + (−0.617 + 0.786i)2-s + (−0.859 − 0.511i)3-s + (−0.238 − 0.971i)4-s + (0.932 − 0.360i)6-s + (−0.848 − 0.529i)7-s + (0.911 + 0.412i)8-s + (0.476 + 0.879i)9-s + (0.895 + 0.444i)11-s + (−0.292 + 0.956i)12-s + (0.826 − 0.563i)13-s + (0.940 − 0.340i)14-s + (−0.886 + 0.462i)16-s + (−0.984 − 0.178i)17-s + (−0.985 − 0.168i)18-s + (0.992 + 0.122i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6145 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.139 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6145 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.139 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3188412047 + 0.3667441261i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3188412047 + 0.3667441261i\) |
\(L(1)\) |
\(\approx\) |
\(0.5316084831 + 0.06003288065i\) |
\(L(1)\) |
\(\approx\) |
\(0.5316084831 + 0.06003288065i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 1229 | \( 1 \) |
good | 2 | \( 1 + (-0.617 + 0.786i)T \) |
| 3 | \( 1 + (-0.859 - 0.511i)T \) |
| 7 | \( 1 + (-0.848 - 0.529i)T \) |
| 11 | \( 1 + (0.895 + 0.444i)T \) |
| 13 | \( 1 + (0.826 - 0.563i)T \) |
| 17 | \( 1 + (-0.984 - 0.178i)T \) |
| 19 | \( 1 + (0.992 + 0.122i)T \) |
| 23 | \( 1 + (-0.262 + 0.964i)T \) |
| 29 | \( 1 + (-0.267 + 0.963i)T \) |
| 31 | \( 1 + (-0.997 + 0.0715i)T \) |
| 37 | \( 1 + (-0.542 - 0.840i)T \) |
| 41 | \( 1 + (0.257 - 0.966i)T \) |
| 43 | \( 1 + (-0.102 - 0.994i)T \) |
| 47 | \( 1 + (-0.471 + 0.881i)T \) |
| 53 | \( 1 + (-0.874 - 0.485i)T \) |
| 59 | \( 1 + (-0.316 - 0.948i)T \) |
| 61 | \( 1 + (0.355 + 0.934i)T \) |
| 67 | \( 1 + (0.995 + 0.0970i)T \) |
| 71 | \( 1 + (0.811 - 0.584i)T \) |
| 73 | \( 1 + (-0.993 - 0.117i)T \) |
| 79 | \( 1 + (-0.412 - 0.911i)T \) |
| 83 | \( 1 + (0.902 + 0.430i)T \) |
| 89 | \( 1 + (-0.502 + 0.864i)T \) |
| 97 | \( 1 + (-0.708 - 0.705i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.28960404945270653494656184204, −16.7432328261993722558879486101, −16.149075501203762003627431177402, −15.783164444862716838209786518561, −14.852781268536110971843169516131, −13.844916720169518154213061945149, −13.17152455026543043647120709739, −12.53340290858164192301667512242, −11.819035145908835340169454094573, −11.33148846443576596578171476127, −10.92109875061256624496643620613, −9.87289826414094611350708807046, −9.57764019030100845315928475854, −8.87728836202056384493894480102, −8.3471727030478056249234367807, −7.115431033564388231073634824470, −6.45885195091855685891647098748, −6.03156799903094476733160584901, −4.928296047526315639605139509906, −4.14048505912964493531973578515, −3.60759388039864053170759170835, −2.87828828158501801664914880916, −1.82571352057156616739922343920, −1.02356240101523553528259066847, −0.17292227733055699202221612669,
0.55118987845516665875860962346, 1.350104307308432741280074583303, 1.970070981788753322495566837004, 3.43137829047396332527436890038, 4.11449132750444796119879136132, 5.13882415536515094913888696924, 5.68080332935908459292041221218, 6.367628427480199399700891873360, 7.05153621460056972161937124060, 7.295913197994477803106705690216, 8.19712820420642361280045909153, 9.21102022893066886528764237766, 9.505790926391438988503809184782, 10.514960463867944534659297262962, 10.89492215610008961896958294954, 11.63471087428712945524509205467, 12.545755987483435851061802823076, 13.15263919940054327389035459419, 13.80515232582336969800844408197, 14.34671960495216765280887850065, 15.456808118348257969057433355670, 15.95422660356030296409239090124, 16.33502108248296329685666899359, 17.14336372532997795327607754175, 17.69980564620499015775483743123