L(s) = 1 | + (0.576 − 0.817i)2-s + (0.453 + 0.891i)3-s + (−0.336 − 0.941i)4-s + (0.989 + 0.142i)6-s + (−0.383 + 0.923i)7-s + (−0.963 − 0.267i)8-s + (−0.588 + 0.808i)9-s + (−0.984 + 0.178i)11-s + (0.686 − 0.726i)12-s + (0.524 + 0.851i)13-s + (0.533 + 0.845i)14-s + (−0.774 + 0.633i)16-s + (0.777 − 0.629i)17-s + (0.321 + 0.946i)18-s + (0.888 + 0.458i)19-s + ⋯ |
L(s) = 1 | + (0.576 − 0.817i)2-s + (0.453 + 0.891i)3-s + (−0.336 − 0.941i)4-s + (0.989 + 0.142i)6-s + (−0.383 + 0.923i)7-s + (−0.963 − 0.267i)8-s + (−0.588 + 0.808i)9-s + (−0.984 + 0.178i)11-s + (0.686 − 0.726i)12-s + (0.524 + 0.851i)13-s + (0.533 + 0.845i)14-s + (−0.774 + 0.633i)16-s + (0.777 − 0.629i)17-s + (0.321 + 0.946i)18-s + (0.888 + 0.458i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6145 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.988 + 0.148i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6145 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.988 + 0.148i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.491803763 + 0.2611597743i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.491803763 + 0.2611597743i\) |
\(L(1)\) |
\(\approx\) |
\(1.513567179 - 0.06955451261i\) |
\(L(1)\) |
\(\approx\) |
\(1.513567179 - 0.06955451261i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 1229 | \( 1 \) |
good | 2 | \( 1 + (0.576 - 0.817i)T \) |
| 3 | \( 1 + (0.453 + 0.891i)T \) |
| 7 | \( 1 + (-0.383 + 0.923i)T \) |
| 11 | \( 1 + (-0.984 + 0.178i)T \) |
| 13 | \( 1 + (0.524 + 0.851i)T \) |
| 17 | \( 1 + (0.777 - 0.629i)T \) |
| 19 | \( 1 + (0.888 + 0.458i)T \) |
| 23 | \( 1 + (0.243 - 0.969i)T \) |
| 29 | \( 1 + (0.656 + 0.754i)T \) |
| 31 | \( 1 + (0.621 + 0.783i)T \) |
| 37 | \( 1 + (0.796 - 0.605i)T \) |
| 41 | \( 1 + (-0.355 - 0.934i)T \) |
| 43 | \( 1 + (0.925 + 0.379i)T \) |
| 47 | \( 1 + (0.326 - 0.945i)T \) |
| 53 | \( 1 + (-0.555 + 0.831i)T \) |
| 59 | \( 1 + (0.613 + 0.789i)T \) |
| 61 | \( 1 + (0.683 - 0.730i)T \) |
| 67 | \( 1 + (-0.840 - 0.542i)T \) |
| 71 | \( 1 + (0.898 - 0.439i)T \) |
| 73 | \( 1 + (-0.991 + 0.132i)T \) |
| 79 | \( 1 + (-0.267 - 0.963i)T \) |
| 83 | \( 1 + (0.906 - 0.421i)T \) |
| 89 | \( 1 + (0.117 + 0.993i)T \) |
| 97 | \( 1 + (-0.886 - 0.462i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.59511411345000350571334723771, −16.867609445370880363616410753921, −16.01458875543023748088095974965, −15.54127966707702749992963755786, −14.83549336214401063706656636207, −14.08458866768402754145094084546, −13.44379978390974938360848078117, −13.20200196672967329875490393726, −12.63912767954307818216850136181, −11.745166658361918757895886954096, −11.10161053326623687783530626484, −10.01481113396443512868235430132, −9.483980998186787997434431569677, −8.316071731552313511143085869392, −7.98191902351414040306549250031, −7.49508075462650483341150042982, −6.7926058568866673812248797921, −5.97913769898413155169364004562, −5.586971379889353396413492229700, −4.57721798728135896323682423688, −3.666097232167050139154535631004, −3.10874382961019703311599753595, −2.555595646758603591539715188996, −1.125802287026586210200008124775, −0.585247751016624334541545456565,
0.579773151491958021480667373683, 1.711227009093129630615784458436, 2.60355608052292101477576847774, 2.95179641216642616942838962425, 3.69324458664375821810916693784, 4.54760019479546245149734805138, 5.17226659936405589271350034476, 5.66181979468042415681745401940, 6.50424373702148558312241557173, 7.573227362650748690241522029757, 8.559819616734229650773143898215, 9.03107444465907419555885895546, 9.669514748947941421561667552876, 10.31196415264347429787487604347, 10.81268268679665729496929888752, 11.68878389578920323648250465107, 12.206335707030308466719799090072, 12.86470534754589487200561938029, 13.7803829857308515952392837862, 14.13649892094551130727513002523, 14.82167550511438928478822409253, 15.5249446861259293479599216228, 16.11994113523624285936849715698, 16.42086516292852140973073482294, 17.80541710468464085297414559149