L(s) = 1 | + (0.573 + 0.819i)2-s + (0.843 − 0.537i)3-s + (−0.342 + 0.939i)4-s + (0.887 + 0.461i)5-s + (0.923 + 0.382i)6-s + (0.953 − 0.300i)7-s + (−0.965 + 0.258i)8-s + (0.422 − 0.906i)9-s + (0.130 + 0.991i)10-s + (0.608 + 0.793i)11-s + (0.216 + 0.976i)12-s + (−0.939 − 0.342i)13-s + (0.793 + 0.608i)14-s + (0.996 − 0.0871i)15-s + (−0.766 − 0.642i)16-s + ⋯ |
L(s) = 1 | + (0.573 + 0.819i)2-s + (0.843 − 0.537i)3-s + (−0.342 + 0.939i)4-s + (0.887 + 0.461i)5-s + (0.923 + 0.382i)6-s + (0.953 − 0.300i)7-s + (−0.965 + 0.258i)8-s + (0.422 − 0.906i)9-s + (0.130 + 0.991i)10-s + (0.608 + 0.793i)11-s + (0.216 + 0.976i)12-s + (−0.939 − 0.342i)13-s + (0.793 + 0.608i)14-s + (0.996 − 0.0871i)15-s + (−0.766 − 0.642i)16-s + ⋯ |
Λ(s)=(=(629s/2ΓR(s)L(s)(0.488+0.872i)Λ(1−s)
Λ(s)=(=(629s/2ΓR(s)L(s)(0.488+0.872i)Λ(1−s)
Degree: |
1 |
Conductor: |
629
= 17⋅37
|
Sign: |
0.488+0.872i
|
Analytic conductor: |
2.92106 |
Root analytic conductor: |
2.92106 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ629(146,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 629, (0: ), 0.488+0.872i)
|
Particular Values
L(21) |
≈ |
2.652179405+1.554486041i |
L(21) |
≈ |
2.652179405+1.554486041i |
L(1) |
≈ |
1.975446702+0.7971851219i |
L(1) |
≈ |
1.975446702+0.7971851219i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 17 | 1 |
| 37 | 1 |
good | 2 | 1+(0.573+0.819i)T |
| 3 | 1+(0.843−0.537i)T |
| 5 | 1+(0.887+0.461i)T |
| 7 | 1+(0.953−0.300i)T |
| 11 | 1+(0.608+0.793i)T |
| 13 | 1+(−0.939−0.342i)T |
| 19 | 1+(0.819+0.573i)T |
| 23 | 1+(−0.130−0.991i)T |
| 29 | 1+(−0.991−0.130i)T |
| 31 | 1+(−0.923+0.382i)T |
| 41 | 1+(0.737+0.675i)T |
| 43 | 1+(−0.707−0.707i)T |
| 47 | 1+(−0.866+0.5i)T |
| 53 | 1+(−0.0871−0.996i)T |
| 59 | 1+(0.0871+0.996i)T |
| 61 | 1+(0.675−0.737i)T |
| 67 | 1+(0.766−0.642i)T |
| 71 | 1+(−0.843+0.537i)T |
| 73 | 1+(−0.923+0.382i)T |
| 79 | 1+(−0.953+0.300i)T |
| 83 | 1+(−0.906−0.422i)T |
| 89 | 1+(0.766+0.642i)T |
| 97 | 1+(−0.608+0.793i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.16640448576518137890057335764, −21.872765000183734328078466583711, −21.25233271398314426029878220571, −20.463495691342117404022434239354, −19.839141452756459400996736850876, −18.96765443717504535251363070205, −18.02972612098097668613716299465, −17.07069686040009579318500536539, −16.00709807560241217077651250283, −14.85602858947859436644034333384, −14.35974273811078534872665177650, −13.6766084932859111430346874456, −12.92639392561932864464466317832, −11.717045553509739265084956479214, −11.06675193212049757646448520106, −9.89243298511057559680278812207, −9.29459369058750335574403711899, −8.66406520654623955253754565633, −7.342516340231868546615081376471, −5.7403004172825990480448112302, −5.11961369622502518623599551944, −4.245893457621073244550346051308, −3.154992226169052444535286374887, −2.13507344767218588924479023916, −1.418160467281624109938386913267,
1.62086601511957916602782063088, 2.5209000050884781908529630643, 3.643962616819924685302923962400, 4.722867389773113910558629491547, 5.704665974425622792933662101, 6.864412716678444487528939789750, 7.359436238196950521422615534541, 8.22808502609673481804278826820, 9.278838012073651277543275945991, 10.04353002062849719748814782980, 11.54252935219153005645382918452, 12.51292741445063357400247350341, 13.205896968409167982416005226092, 14.35087361558807472686031589831, 14.43833944677269571264249129317, 15.10023766975787099146063695972, 16.52311043158538918753926328032, 17.453428734215592627498665911135, 17.93257956597386702607787861988, 18.68850519183602294866641672779, 20.13642385291354259225192277329, 20.62409881706322546008057362791, 21.55022033213549436591521506716, 22.362545867734721464879986369641, 23.131513502884374723693531863855