L(s) = 1 | + (−0.766 − 0.642i)2-s + (−0.766 + 0.642i)3-s + (0.173 + 0.984i)4-s + (−0.939 − 0.342i)5-s + 6-s + (0.939 + 0.342i)7-s + (0.5 − 0.866i)8-s + (0.173 − 0.984i)9-s + (0.5 + 0.866i)10-s + (0.5 − 0.866i)11-s + (−0.766 − 0.642i)12-s + (−0.173 − 0.984i)13-s + (−0.5 − 0.866i)14-s + (0.939 − 0.342i)15-s + (−0.939 + 0.342i)16-s + ⋯ |
L(s) = 1 | + (−0.766 − 0.642i)2-s + (−0.766 + 0.642i)3-s + (0.173 + 0.984i)4-s + (−0.939 − 0.342i)5-s + 6-s + (0.939 + 0.342i)7-s + (0.5 − 0.866i)8-s + (0.173 − 0.984i)9-s + (0.5 + 0.866i)10-s + (0.5 − 0.866i)11-s + (−0.766 − 0.642i)12-s + (−0.173 − 0.984i)13-s + (−0.5 − 0.866i)14-s + (0.939 − 0.342i)15-s + (−0.939 + 0.342i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 629 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.760 - 0.649i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 629 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.760 - 0.649i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1200382719 - 0.3256016830i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1200382719 - 0.3256016830i\) |
\(L(1)\) |
\(\approx\) |
\(0.4685234198 - 0.1360254502i\) |
\(L(1)\) |
\(\approx\) |
\(0.4685234198 - 0.1360254502i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (-0.766 - 0.642i)T \) |
| 3 | \( 1 + (-0.766 + 0.642i)T \) |
| 5 | \( 1 + (-0.939 - 0.342i)T \) |
| 7 | \( 1 + (0.939 + 0.342i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.173 - 0.984i)T \) |
| 19 | \( 1 + (-0.766 + 0.642i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 + T \) |
| 41 | \( 1 + (-0.173 - 0.984i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + (-0.939 + 0.342i)T \) |
| 59 | \( 1 + (0.939 - 0.342i)T \) |
| 61 | \( 1 + (0.173 + 0.984i)T \) |
| 67 | \( 1 + (-0.939 - 0.342i)T \) |
| 71 | \( 1 + (-0.766 + 0.642i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.939 - 0.342i)T \) |
| 83 | \( 1 + (0.173 - 0.984i)T \) |
| 89 | \( 1 + (0.939 - 0.342i)T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.50652078025107453095450385212, −22.89912477718758586615345845079, −21.8415993344655738159213593068, −20.54867639605228197195461158982, −19.51060196409794890866251682503, −19.14933203749249254099082613299, −18.130809373011039987177119627107, −17.48552007171763875563223166317, −16.89088212376625843773881054020, −15.94526235265620217379708699177, −15.03551401532214407746323727062, −14.35004164493345818985755132375, −13.305570856219567841213313185177, −11.75985159991929100555575607284, −11.589840805840514748118151112516, −10.64559971137022256642556661418, −9.62520298844799793903890248080, −8.33275962440553963120484155497, −7.67373947867960576901076420885, −6.94508871905502346578052538036, −6.29499016605877537774636155593, −4.86125212341753783044196833167, −4.32006030158086171838868044106, −2.16814050230947942586076203372, −1.27880209035915288909857079205,
0.28326758026343881823030775641, 1.46389076174222849658971114528, 3.09449750361237476742102718081, 3.99821665253212395271510502656, 4.83898229634365972459158334024, 6.00915409569586199232350720286, 7.29312779034001044693641578481, 8.47579845103903972523316057238, 8.66226486163193668735422292509, 10.13566045071852861624400142114, 10.76773568803291860926861521739, 11.59005367897484204209242325894, 12.07154020990921462529583724215, 12.92154132821965419169835777599, 14.53853502826467555495685555575, 15.37500669397541251853079169701, 16.26260717030653552445786604351, 16.86987757123793752932596651719, 17.66714407566380076836141139226, 18.50728428146697993837036194198, 19.29251269351130937148408866497, 20.3900433943609425826476471728, 20.77842731658600640672685227675, 21.78525863034671361723453410146, 22.36832765902788147137600233379