L(s) = 1 | + (0.258 + 0.965i)2-s + (0.608 − 0.793i)3-s + (−0.866 + 0.5i)4-s + (0.608 − 0.793i)5-s + (0.923 + 0.382i)6-s + (0.130 + 0.991i)7-s + (−0.707 − 0.707i)8-s + (−0.258 − 0.965i)9-s + (0.923 + 0.382i)10-s + (−0.382 + 0.923i)11-s + (−0.130 + 0.991i)12-s + (0.5 + 0.866i)13-s + (−0.923 + 0.382i)14-s + (−0.258 − 0.965i)15-s + (0.5 − 0.866i)16-s + ⋯ |
L(s) = 1 | + (0.258 + 0.965i)2-s + (0.608 − 0.793i)3-s + (−0.866 + 0.5i)4-s + (0.608 − 0.793i)5-s + (0.923 + 0.382i)6-s + (0.130 + 0.991i)7-s + (−0.707 − 0.707i)8-s + (−0.258 − 0.965i)9-s + (0.923 + 0.382i)10-s + (−0.382 + 0.923i)11-s + (−0.130 + 0.991i)12-s + (0.5 + 0.866i)13-s + (−0.923 + 0.382i)14-s + (−0.258 − 0.965i)15-s + (0.5 − 0.866i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 629 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.555 + 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 629 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.555 + 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.774018666 + 0.9485879743i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.774018666 + 0.9485879743i\) |
\(L(1)\) |
\(\approx\) |
\(1.414724563 + 0.4706000758i\) |
\(L(1)\) |
\(\approx\) |
\(1.414724563 + 0.4706000758i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (0.258 + 0.965i)T \) |
| 3 | \( 1 + (0.608 - 0.793i)T \) |
| 5 | \( 1 + (0.608 - 0.793i)T \) |
| 7 | \( 1 + (0.130 + 0.991i)T \) |
| 11 | \( 1 + (-0.382 + 0.923i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (0.965 + 0.258i)T \) |
| 23 | \( 1 + (0.923 + 0.382i)T \) |
| 29 | \( 1 + (0.382 + 0.923i)T \) |
| 31 | \( 1 + (-0.923 + 0.382i)T \) |
| 41 | \( 1 + (-0.130 - 0.991i)T \) |
| 43 | \( 1 + (0.707 + 0.707i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.965 - 0.258i)T \) |
| 59 | \( 1 + (0.965 - 0.258i)T \) |
| 61 | \( 1 + (0.991 - 0.130i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.608 + 0.793i)T \) |
| 73 | \( 1 + (0.923 - 0.382i)T \) |
| 79 | \( 1 + (0.130 + 0.991i)T \) |
| 83 | \( 1 + (-0.965 + 0.258i)T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.382 - 0.923i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.527443448111390109873249947550, −21.94983179852547684047356780726, −20.95197091679447229508244091927, −20.67050382925188252081899181006, −19.69602186736416074055588074497, −18.93201927855987220789548605770, −18.05582510033296647479196910106, −17.1864422699279172215219181837, −16.07805763860887142678829242055, −15.00355344729382886394654109675, −14.30593667812399267934642901587, −13.48503791945601303835166985756, −13.206280554490986845319398006550, −11.39529155052070488659447949692, −10.81902589699403142381415990783, −10.26012036614455721990941579883, −9.47830410042897363385394151455, −8.468431900343796113568067409755, −7.458891757794327183263357089222, −5.93101530497129816572240753693, −5.11565151496134931773647377436, −3.93113574092233242691074688332, −3.18431737456623314607458211059, −2.514072758810834030099090466330, −1.008402466918675634015541039910,
1.32784479897312355196523786835, 2.38246028313040204759599232043, 3.664864381448212762389047844498, 5.00496272519653770630313761546, 5.61786844659159989048050673479, 6.69737924749082820889154989261, 7.45617452706486760515523357179, 8.58292307368377627198531128129, 9.003756747940993542180093947657, 9.77561007790065209814899052066, 11.72751550610615928448513902876, 12.5323542872855277631174087814, 13.05086753341870769286741083561, 13.96754010828533090874068579009, 14.625454278697445697792892102782, 15.56326562040498988206029727045, 16.334688000753165871422230072309, 17.40294851748205952089666563426, 18.122906117096068549663937290024, 18.576598343500625441923959153813, 19.76233254864852616408490015626, 20.86598595972104113465962545562, 21.32914353213273304591489151028, 22.41740826705464543896263445082, 23.43373750093053224883369029002