L(s) = 1 | + (−0.996 − 0.0871i)2-s + (−0.461 − 0.887i)3-s + (0.984 + 0.173i)4-s + (0.999 + 0.0436i)5-s + (0.382 + 0.923i)6-s + (0.675 + 0.737i)7-s + (−0.965 − 0.258i)8-s + (−0.573 + 0.819i)9-s + (−0.991 − 0.130i)10-s + (−0.793 − 0.608i)11-s + (−0.300 − 0.953i)12-s + (−0.173 + 0.984i)13-s + (−0.608 − 0.793i)14-s + (−0.422 − 0.906i)15-s + (0.939 + 0.342i)16-s + ⋯ |
L(s) = 1 | + (−0.996 − 0.0871i)2-s + (−0.461 − 0.887i)3-s + (0.984 + 0.173i)4-s + (0.999 + 0.0436i)5-s + (0.382 + 0.923i)6-s + (0.675 + 0.737i)7-s + (−0.965 − 0.258i)8-s + (−0.573 + 0.819i)9-s + (−0.991 − 0.130i)10-s + (−0.793 − 0.608i)11-s + (−0.300 − 0.953i)12-s + (−0.173 + 0.984i)13-s + (−0.608 − 0.793i)14-s + (−0.422 − 0.906i)15-s + (0.939 + 0.342i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 629 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.561 + 0.827i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 629 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.561 + 0.827i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6252680361 + 0.3314713270i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6252680361 + 0.3314713270i\) |
\(L(1)\) |
\(\approx\) |
\(0.6727012250 + 0.005765310776i\) |
\(L(1)\) |
\(\approx\) |
\(0.6727012250 + 0.005765310776i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (-0.996 - 0.0871i)T \) |
| 3 | \( 1 + (-0.461 - 0.887i)T \) |
| 5 | \( 1 + (0.999 + 0.0436i)T \) |
| 7 | \( 1 + (0.675 + 0.737i)T \) |
| 11 | \( 1 + (-0.793 - 0.608i)T \) |
| 13 | \( 1 + (-0.173 + 0.984i)T \) |
| 19 | \( 1 + (0.0871 + 0.996i)T \) |
| 23 | \( 1 + (-0.991 - 0.130i)T \) |
| 29 | \( 1 + (0.130 + 0.991i)T \) |
| 31 | \( 1 + (-0.382 + 0.923i)T \) |
| 41 | \( 1 + (0.976 - 0.216i)T \) |
| 43 | \( 1 + (-0.707 + 0.707i)T \) |
| 47 | \( 1 + (-0.866 - 0.5i)T \) |
| 53 | \( 1 + (-0.906 + 0.422i)T \) |
| 59 | \( 1 + (-0.906 + 0.422i)T \) |
| 61 | \( 1 + (-0.216 - 0.976i)T \) |
| 67 | \( 1 + (-0.939 + 0.342i)T \) |
| 71 | \( 1 + (0.461 + 0.887i)T \) |
| 73 | \( 1 + (0.382 - 0.923i)T \) |
| 79 | \( 1 + (0.675 + 0.737i)T \) |
| 83 | \( 1 + (-0.819 - 0.573i)T \) |
| 89 | \( 1 + (0.939 + 0.342i)T \) |
| 97 | \( 1 + (-0.793 + 0.608i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.772942416187739788458537479134, −21.801904309511759500799238596359, −20.92647976357638760041658166782, −20.51231645109396388406886975827, −19.75756133920066770018906992626, −18.18238274776169446330641682469, −17.75180582071213884382836111716, −17.24294432328245213625050813894, −16.410141247337515386046375282096, −15.44156606317492143263503222452, −14.843671287711296482772136979373, −13.7202555145799125111156962868, −12.580511378605500238627169512269, −11.37231546451002482162411312930, −10.683268558027856712160197894818, −9.99676388609365833306330734315, −9.49170965240523384255267060059, −8.27531472504920803628825013936, −7.43757346947020932392346949201, −6.24865817131102650561593454365, −5.42374659507347103639368803120, −4.537701382723993635926061663957, −2.99101974704613786576319165775, −1.93475787958863247255294985976, −0.503608520864796483122401664948,
1.44436732485497556338951908421, 1.97671290315768557281779676632, 2.95691202873698763337933264221, 5.091967862042456129526776985754, 5.91497051191458988533570887096, 6.58903697214653418139239036997, 7.72972297322446640038965156024, 8.442527304641892050833255085860, 9.31672046603560759085050244929, 10.43387144063818241537190262945, 11.11946939690840290661484003787, 12.05720872171145434302849393330, 12.704565962916347212668196245937, 13.94937175550359479185120226066, 14.58073717758705683023804154974, 16.08556373514156050471840949182, 16.61053795782704741765197767980, 17.58449107872126938604929130366, 18.30721627754346958285200170120, 18.50708128106102933957339710206, 19.50103229145544054620559686735, 20.5959574788371903466086441017, 21.48896176512325540683180807729, 21.88261922028447045315865258272, 23.36476874057196140606579227961