L(s) = 1 | + (0.258 + 0.965i)2-s + (0.793 + 0.608i)3-s + (−0.866 + 0.5i)4-s + (−0.793 − 0.608i)5-s + (−0.382 + 0.923i)6-s + (0.991 − 0.130i)7-s + (−0.707 − 0.707i)8-s + (0.258 + 0.965i)9-s + (0.382 − 0.923i)10-s + (0.923 + 0.382i)11-s + (−0.991 − 0.130i)12-s + (−0.5 − 0.866i)13-s + (0.382 + 0.923i)14-s + (−0.258 − 0.965i)15-s + (0.5 − 0.866i)16-s + ⋯ |
L(s) = 1 | + (0.258 + 0.965i)2-s + (0.793 + 0.608i)3-s + (−0.866 + 0.5i)4-s + (−0.793 − 0.608i)5-s + (−0.382 + 0.923i)6-s + (0.991 − 0.130i)7-s + (−0.707 − 0.707i)8-s + (0.258 + 0.965i)9-s + (0.382 − 0.923i)10-s + (0.923 + 0.382i)11-s + (−0.991 − 0.130i)12-s + (−0.5 − 0.866i)13-s + (0.382 + 0.923i)14-s + (−0.258 − 0.965i)15-s + (0.5 − 0.866i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 629 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.392 + 0.919i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 629 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.392 + 0.919i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.053640618 + 1.595875064i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.053640618 + 1.595875064i\) |
\(L(1)\) |
\(\approx\) |
\(1.126217373 + 0.8849245332i\) |
\(L(1)\) |
\(\approx\) |
\(1.126217373 + 0.8849245332i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (0.258 + 0.965i)T \) |
| 3 | \( 1 + (0.793 + 0.608i)T \) |
| 5 | \( 1 + (-0.793 - 0.608i)T \) |
| 7 | \( 1 + (0.991 - 0.130i)T \) |
| 11 | \( 1 + (0.923 + 0.382i)T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.965 + 0.258i)T \) |
| 23 | \( 1 + (-0.382 + 0.923i)T \) |
| 29 | \( 1 + (0.923 - 0.382i)T \) |
| 31 | \( 1 + (0.382 + 0.923i)T \) |
| 41 | \( 1 + (-0.991 + 0.130i)T \) |
| 43 | \( 1 + (0.707 + 0.707i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.965 + 0.258i)T \) |
| 59 | \( 1 + (0.965 - 0.258i)T \) |
| 61 | \( 1 + (0.130 + 0.991i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.793 - 0.608i)T \) |
| 73 | \( 1 + (0.382 + 0.923i)T \) |
| 79 | \( 1 + (-0.991 + 0.130i)T \) |
| 83 | \( 1 + (0.965 - 0.258i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.923 + 0.382i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.44471487887170815254879781676, −21.91985721937094542709812928123, −20.82646578480722889261700613923, −20.21066947067961272976056467410, −19.377265889893969114499462049234, −18.8678408777794501492691421526, −18.14176517462718648131086969695, −17.26973892459162414521379638543, −15.7498780842241567720781648391, −14.56664051142071445055318928951, −14.40446877967679591107589830592, −13.62802399329480079581553966128, −12.25866379307160025263659179380, −11.82870291004881490475798428205, −11.14201680628015365096295150208, −9.9419342415605976993253639739, −8.92543472594255468088248805811, −8.25436307123541634053705990455, −7.24895326483697875339274408847, −6.2375439305634970574060944332, −4.676111861768818850463653603055, −3.939043320053738918017852210904, −2.9462215595022756078509209640, −2.065083144054354194109581889787, −0.97188145425126622949587897762,
1.31541958731280232241223268245, 3.11854743348796739022148157030, 4.01761081389211146888708810906, 4.76281166413164713134184212293, 5.43625451079050715994670025971, 7.09574045339260340230319853200, 7.8514912778170069855384184737, 8.37695870951681011525836288963, 9.27995102863277757885670379916, 10.16162406007496806025068625841, 11.614775684997285212305133957574, 12.33129589978452073955789485710, 13.51253819458314655969406959253, 14.24586361710010579592486053387, 14.98621483894388002263656231794, 15.58077520884376119147628128196, 16.3574441344007840717563668220, 17.269215284514884327897908438902, 17.96292753827953021781576062104, 19.30213092278224342229830572021, 20.00245974424076084351102627239, 20.7557159815822368058451821460, 21.65021805765247334772355119192, 22.46654453203862522017597231098, 23.31486809551704483008297881060