L(s) = 1 | + (0.978 + 0.207i)11-s + (−0.978 + 0.207i)13-s + (−0.809 − 0.587i)17-s + (−0.809 − 0.587i)19-s + (0.669 − 0.743i)23-s + (−0.104 − 0.994i)29-s + (−0.104 + 0.994i)31-s + (−0.309 + 0.951i)37-s + (0.978 − 0.207i)41-s + (−0.5 + 0.866i)43-s + (0.104 + 0.994i)47-s + (0.809 − 0.587i)53-s + (−0.978 + 0.207i)59-s + (0.978 + 0.207i)61-s + (−0.104 + 0.994i)67-s + ⋯ |
L(s) = 1 | + (0.978 + 0.207i)11-s + (−0.978 + 0.207i)13-s + (−0.809 − 0.587i)17-s + (−0.809 − 0.587i)19-s + (0.669 − 0.743i)23-s + (−0.104 − 0.994i)29-s + (−0.104 + 0.994i)31-s + (−0.309 + 0.951i)37-s + (0.978 − 0.207i)41-s + (−0.5 + 0.866i)43-s + (0.104 + 0.994i)47-s + (0.809 − 0.587i)53-s + (−0.978 + 0.207i)59-s + (0.978 + 0.207i)61-s + (−0.104 + 0.994i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.889 - 0.457i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.889 - 0.457i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.476076435 - 0.3571004720i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.476076435 - 0.3571004720i\) |
\(L(1)\) |
\(\approx\) |
\(1.019973955 - 0.04127447692i\) |
\(L(1)\) |
\(\approx\) |
\(1.019973955 - 0.04127447692i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + (0.978 + 0.207i)T \) |
| 13 | \( 1 + (-0.978 + 0.207i)T \) |
| 17 | \( 1 + (-0.809 - 0.587i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
| 23 | \( 1 + (0.669 - 0.743i)T \) |
| 29 | \( 1 + (-0.104 - 0.994i)T \) |
| 31 | \( 1 + (-0.104 + 0.994i)T \) |
| 37 | \( 1 + (-0.309 + 0.951i)T \) |
| 41 | \( 1 + (0.978 - 0.207i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + (0.104 + 0.994i)T \) |
| 53 | \( 1 + (0.809 - 0.587i)T \) |
| 59 | \( 1 + (-0.978 + 0.207i)T \) |
| 61 | \( 1 + (0.978 + 0.207i)T \) |
| 67 | \( 1 + (-0.104 + 0.994i)T \) |
| 71 | \( 1 + (0.809 - 0.587i)T \) |
| 73 | \( 1 + (0.309 + 0.951i)T \) |
| 79 | \( 1 + (0.104 + 0.994i)T \) |
| 83 | \( 1 + (-0.913 + 0.406i)T \) |
| 89 | \( 1 + (-0.309 - 0.951i)T \) |
| 97 | \( 1 + (-0.104 - 0.994i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.46998592001501836737258314103, −17.067315523173525531749604700263, −16.569341837158791740090700831796, −15.63417056769415056367571816243, −14.93090719386114158557824446617, −14.60692278434543354901118902454, −13.77131380479455943826418173772, −13.05461289518689299602097189478, −12.42453240921997067189345938366, −11.84928160370491500018062425689, −11.00677897599611575878364917828, −10.5533509081001295037921909126, −9.628149788456706769607947903141, −9.07702743176380749747297396459, −8.467109851171918594573820087961, −7.57411385450256941385021993715, −6.97685533732873861153335731962, −6.26205767861102198770758773057, −5.555134383479210545812089203853, −4.762575772577626028213665877709, −3.95605429525948829782608184041, −3.44019965111056354194264707924, −2.30535681732029683472506327160, −1.79265020615904155814040588604, −0.69027325989302245887304340776,
0.52598404022463797500417027287, 1.55642002279680462157296773997, 2.43711339159577957412426701420, 2.97643220822054029000402718576, 4.21144673826885578823892327573, 4.50249316305403192528483876807, 5.304054061759581145762013191068, 6.357101349537434480277870987470, 6.81271353064785318283511107901, 7.38196484842652475575901690575, 8.433966035750378363493762006287, 8.92065321340602070374935608500, 9.64365663609616599229671565243, 10.20255957043237056034260204371, 11.27416774520251805836186029221, 11.45166920467231358345980138134, 12.50964249512659873083293219441, 12.797284477659019561417633651342, 13.817198214705658810201572780916, 14.28335496589290950529127343322, 15.03967342941178906802283632481, 15.46839459153567095260995698169, 16.41812598623574256070008647347, 16.9689712924030286926955175813, 17.50960841643327873502471055016