Properties

Label 1-6384-6384.1661-r0-0-0
Degree 11
Conductor 63846384
Sign 0.0303+0.999i0.0303 + 0.999i
Analytic cond. 29.647129.6471
Root an. cond. 29.647129.6471
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)5-s + (−0.866 − 0.5i)11-s + (0.866 + 0.5i)13-s − 17-s + 23-s + (0.5 + 0.866i)25-s + (−0.866 − 0.5i)29-s + (0.5 − 0.866i)31-s + (0.866 − 0.5i)37-s + (0.5 + 0.866i)41-s + (−0.866 + 0.5i)43-s − 47-s + (−0.866 + 0.5i)53-s + (0.5 + 0.866i)55-s i·59-s + ⋯
L(s)  = 1  + (−0.866 − 0.5i)5-s + (−0.866 − 0.5i)11-s + (0.866 + 0.5i)13-s − 17-s + 23-s + (0.5 + 0.866i)25-s + (−0.866 − 0.5i)29-s + (0.5 − 0.866i)31-s + (0.866 − 0.5i)37-s + (0.5 + 0.866i)41-s + (−0.866 + 0.5i)43-s − 47-s + (−0.866 + 0.5i)53-s + (0.5 + 0.866i)55-s i·59-s + ⋯

Functional equation

Λ(s)=(6384s/2ΓR(s)L(s)=((0.0303+0.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 6384 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0303 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(6384s/2ΓR(s)L(s)=((0.0303+0.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 6384 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0303 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 63846384    =    2437192^{4} \cdot 3 \cdot 7 \cdot 19
Sign: 0.0303+0.999i0.0303 + 0.999i
Analytic conductor: 29.647129.6471
Root analytic conductor: 29.647129.6471
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ6384(1661,)\chi_{6384} (1661, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 6384, (0: ), 0.0303+0.999i)(1,\ 6384,\ (0:\ ),\ 0.0303 + 0.999i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.3881241853+0.4000933284i0.3881241853 + 0.4000933284i
L(12)L(\frac12) \approx 0.3881241853+0.4000933284i0.3881241853 + 0.4000933284i
L(1)L(1) \approx 0.77584789400.05234576474i0.7758478940 - 0.05234576474i
L(1)L(1) \approx 0.77584789400.05234576474i0.7758478940 - 0.05234576474i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
7 1 1
19 1 1
good5 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
11 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
13 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
17 1T 1 - T
23 1+T 1 + T
29 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
31 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
37 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
41 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
43 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
47 1T 1 - T
53 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
59 1iT 1 - iT
61 1+iT 1 + iT
67 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
71 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
73 1T 1 - T
79 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
83 1iT 1 - iT
89 1T 1 - T
97 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−17.61271480754093334907414461768, −16.67477537680935665083698179159, −16.003299134379012389986219871206, −15.346835505181484561499579378214, −15.13966316744803550574674631760, −14.257368656345227548119882169284, −13.383359608590662492882224332146, −12.922695722898052246152214965487, −12.23570208211723611881708112028, −11.34775790339973376342930147457, −10.90163856759028801472492218101, −10.41625501143107453882878759186, −9.49753416989401049164440679346, −8.642351001071361830841394031493, −8.14418467471177689667288054522, −7.38490830054826467856351311530, −6.82298993843668164801962398475, −6.11021261179316271385348400203, −5.09773359508332904556513298675, −4.60433893750968244226675617273, −3.65219939529606262411279455923, −3.10070909045657489000202170695, −2.33707863467245588394826067081, −1.32683657241413128598888957961, −0.17907338980214307335082347490, 0.80511452820026174405847259753, 1.71830010070338999702842470851, 2.74616720450181885183777881626, 3.406733481880296381231372874717, 4.32841051449545947656116601243, 4.68037699789548931398514863129, 5.678530039714430004150941612119, 6.31145920155069505121032812945, 7.17933034561042330992643894414, 7.88827783614777023762959561749, 8.42252018737306394692929650679, 9.05956270845546374807371817251, 9.73122383309391355844254029399, 10.79384107485130464046325735177, 11.33098257400300249526740302560, 11.57584818344890805869991540070, 12.77253217449168049027293411912, 13.14517594355992599441671444362, 13.609409248653399202126725091317, 14.75981023148546360541915940970, 15.17103657252704609183073148063, 16.001384912131070419321017845575, 16.257833432691237051190630869930, 17.00784312054505267876603027109, 17.79663211729599128509926734031

Graph of the ZZ-function along the critical line