L(s) = 1 | + (−0.866 − 0.5i)5-s + (−0.866 − 0.5i)11-s + (0.866 + 0.5i)13-s − 17-s + 23-s + (0.5 + 0.866i)25-s + (−0.866 − 0.5i)29-s + (0.5 − 0.866i)31-s + (0.866 − 0.5i)37-s + (0.5 + 0.866i)41-s + (−0.866 + 0.5i)43-s − 47-s + (−0.866 + 0.5i)53-s + (0.5 + 0.866i)55-s − i·59-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)5-s + (−0.866 − 0.5i)11-s + (0.866 + 0.5i)13-s − 17-s + 23-s + (0.5 + 0.866i)25-s + (−0.866 − 0.5i)29-s + (0.5 − 0.866i)31-s + (0.866 − 0.5i)37-s + (0.5 + 0.866i)41-s + (−0.866 + 0.5i)43-s − 47-s + (−0.866 + 0.5i)53-s + (0.5 + 0.866i)55-s − i·59-s + ⋯ |
Λ(s)=(=(6384s/2ΓR(s)L(s)(0.0303+0.999i)Λ(1−s)
Λ(s)=(=(6384s/2ΓR(s)L(s)(0.0303+0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
6384
= 24⋅3⋅7⋅19
|
Sign: |
0.0303+0.999i
|
Analytic conductor: |
29.6471 |
Root analytic conductor: |
29.6471 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ6384(1661,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 6384, (0: ), 0.0303+0.999i)
|
Particular Values
L(21) |
≈ |
0.3881241853+0.4000933284i |
L(21) |
≈ |
0.3881241853+0.4000933284i |
L(1) |
≈ |
0.7758478940−0.05234576474i |
L(1) |
≈ |
0.7758478940−0.05234576474i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1 |
| 19 | 1 |
good | 5 | 1+(−0.866−0.5i)T |
| 11 | 1+(−0.866−0.5i)T |
| 13 | 1+(0.866+0.5i)T |
| 17 | 1−T |
| 23 | 1+T |
| 29 | 1+(−0.866−0.5i)T |
| 31 | 1+(0.5−0.866i)T |
| 37 | 1+(0.866−0.5i)T |
| 41 | 1+(0.5+0.866i)T |
| 43 | 1+(−0.866+0.5i)T |
| 47 | 1−T |
| 53 | 1+(−0.866+0.5i)T |
| 59 | 1−iT |
| 61 | 1+iT |
| 67 | 1+(−0.866+0.5i)T |
| 71 | 1+(0.5+0.866i)T |
| 73 | 1−T |
| 79 | 1+(0.5−0.866i)T |
| 83 | 1−iT |
| 89 | 1−T |
| 97 | 1+(0.5+0.866i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−17.61271480754093334907414461768, −16.67477537680935665083698179159, −16.003299134379012389986219871206, −15.346835505181484561499579378214, −15.13966316744803550574674631760, −14.257368656345227548119882169284, −13.383359608590662492882224332146, −12.922695722898052246152214965487, −12.23570208211723611881708112028, −11.34775790339973376342930147457, −10.90163856759028801472492218101, −10.41625501143107453882878759186, −9.49753416989401049164440679346, −8.642351001071361830841394031493, −8.14418467471177689667288054522, −7.38490830054826467856351311530, −6.82298993843668164801962398475, −6.11021261179316271385348400203, −5.09773359508332904556513298675, −4.60433893750968244226675617273, −3.65219939529606262411279455923, −3.10070909045657489000202170695, −2.33707863467245588394826067081, −1.32683657241413128598888957961, −0.17907338980214307335082347490,
0.80511452820026174405847259753, 1.71830010070338999702842470851, 2.74616720450181885183777881626, 3.406733481880296381231372874717, 4.32841051449545947656116601243, 4.68037699789548931398514863129, 5.678530039714430004150941612119, 6.31145920155069505121032812945, 7.17933034561042330992643894414, 7.88827783614777023762959561749, 8.42252018737306394692929650679, 9.05956270845546374807371817251, 9.73122383309391355844254029399, 10.79384107485130464046325735177, 11.33098257400300249526740302560, 11.57584818344890805869991540070, 12.77253217449168049027293411912, 13.14517594355992599441671444362, 13.609409248653399202126725091317, 14.75981023148546360541915940970, 15.17103657252704609183073148063, 16.001384912131070419321017845575, 16.257833432691237051190630869930, 17.00784312054505267876603027109, 17.79663211729599128509926734031