Properties

Label 1-6384-6384.2189-r0-0-0
Degree 11
Conductor 63846384
Sign 0.1210.992i-0.121 - 0.992i
Analytic cond. 29.647129.6471
Root an. cond. 29.647129.6471
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.342 + 0.939i)5-s + (0.866 − 0.5i)11-s + (−0.342 + 0.939i)13-s + (−0.939 + 0.342i)17-s + (0.766 − 0.642i)23-s + (−0.766 + 0.642i)25-s + (−0.642 − 0.766i)29-s − 31-s + (−0.866 + 0.5i)37-s + (0.939 − 0.342i)41-s + (−0.984 − 0.173i)43-s + (−0.939 − 0.342i)47-s + (0.342 − 0.939i)53-s + (0.766 + 0.642i)55-s + (0.342 + 0.939i)59-s + ⋯
L(s)  = 1  + (0.342 + 0.939i)5-s + (0.866 − 0.5i)11-s + (−0.342 + 0.939i)13-s + (−0.939 + 0.342i)17-s + (0.766 − 0.642i)23-s + (−0.766 + 0.642i)25-s + (−0.642 − 0.766i)29-s − 31-s + (−0.866 + 0.5i)37-s + (0.939 − 0.342i)41-s + (−0.984 − 0.173i)43-s + (−0.939 − 0.342i)47-s + (0.342 − 0.939i)53-s + (0.766 + 0.642i)55-s + (0.342 + 0.939i)59-s + ⋯

Functional equation

Λ(s)=(6384s/2ΓR(s)L(s)=((0.1210.992i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 6384 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.121 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(6384s/2ΓR(s)L(s)=((0.1210.992i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 6384 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.121 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 63846384    =    2437192^{4} \cdot 3 \cdot 7 \cdot 19
Sign: 0.1210.992i-0.121 - 0.992i
Analytic conductor: 29.647129.6471
Root analytic conductor: 29.647129.6471
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ6384(2189,)\chi_{6384} (2189, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 6384, (0: ), 0.1210.992i)(1,\ 6384,\ (0:\ ),\ -0.121 - 0.992i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.46624539050.5269505514i0.4662453905 - 0.5269505514i
L(12)L(\frac12) \approx 0.46624539050.5269505514i0.4662453905 - 0.5269505514i
L(1)L(1) \approx 0.9558000470+0.1010594018i0.9558000470 + 0.1010594018i
L(1)L(1) \approx 0.9558000470+0.1010594018i0.9558000470 + 0.1010594018i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
7 1 1
19 1 1
good5 1+(0.342+0.939i)T 1 + (0.342 + 0.939i)T
11 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
13 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
17 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
23 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
29 1+(0.6420.766i)T 1 + (-0.642 - 0.766i)T
31 1T 1 - T
37 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
41 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
43 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
47 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
53 1+(0.3420.939i)T 1 + (0.342 - 0.939i)T
59 1+(0.342+0.939i)T 1 + (0.342 + 0.939i)T
61 1+(0.6420.766i)T 1 + (-0.642 - 0.766i)T
67 1+(0.984+0.173i)T 1 + (-0.984 + 0.173i)T
71 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
73 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
79 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
83 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
89 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
97 1+(0.7660.642i)T 1 + (-0.766 - 0.642i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−17.6792125397163929868178505502, −17.213577574432438552730440817334, −16.501160698668030013539113642926, −15.93752443421367666925901795084, −15.08717900213415791188645550398, −14.665501264716076401634079782425, −13.73933548251814349614263485527, −13.12576736147537297824219338940, −12.62812053692602003407159083912, −12.01624937452434466169429615438, −11.20798042759701620475206553153, −10.57941216245719750532226977964, −9.579949962100734165632105681714, −9.2705549883071176573015923409, −8.64024759897286640938293441556, −7.77506571975872074172787201566, −7.102988326752761375667350682348, −6.3845940516251856823497389486, −5.42293646112012869106927058052, −5.07280246701298380161701312462, −4.23120523247503168744688502813, −3.50757198917976411184727787172, −2.53914710045531469768877390285, −1.68453021429681951272052578120, −1.05326427289405714783201247683, 0.16887524851565332066632896918, 1.632465371928830476991736584972, 2.076082042366001182785007565221, 3.03151848973861442338713399467, 3.72919758819183521919493536616, 4.41476480138543973439279357133, 5.32265705832249479485101169585, 6.209292392158776273816515977019, 6.68205349598990967791624516336, 7.166598743413610503571115017293, 8.11986844827280446674930969027, 9.035859402556777742764350500652, 9.32817239690129494709067522936, 10.27057139028639891565547598541, 10.89854578842619726166106764904, 11.45678344918447697695457388047, 12.01426434450932611165628012728, 13.014752927715572328977190738962, 13.60408924948158458276631307858, 14.19537256436219097625424792240, 14.89224795243751071016516180012, 15.18418715879445664445064017603, 16.30107112649832884303245925243, 16.791130879481297691802728001502, 17.40854655089489444927031352644

Graph of the ZZ-function along the critical line