L(s) = 1 | + (0.342 + 0.939i)5-s + (0.866 − 0.5i)11-s + (−0.342 + 0.939i)13-s + (−0.939 + 0.342i)17-s + (0.766 − 0.642i)23-s + (−0.766 + 0.642i)25-s + (−0.642 − 0.766i)29-s − 31-s + (−0.866 + 0.5i)37-s + (0.939 − 0.342i)41-s + (−0.984 − 0.173i)43-s + (−0.939 − 0.342i)47-s + (0.342 − 0.939i)53-s + (0.766 + 0.642i)55-s + (0.342 + 0.939i)59-s + ⋯ |
L(s) = 1 | + (0.342 + 0.939i)5-s + (0.866 − 0.5i)11-s + (−0.342 + 0.939i)13-s + (−0.939 + 0.342i)17-s + (0.766 − 0.642i)23-s + (−0.766 + 0.642i)25-s + (−0.642 − 0.766i)29-s − 31-s + (−0.866 + 0.5i)37-s + (0.939 − 0.342i)41-s + (−0.984 − 0.173i)43-s + (−0.939 − 0.342i)47-s + (0.342 − 0.939i)53-s + (0.766 + 0.642i)55-s + (0.342 + 0.939i)59-s + ⋯ |
Λ(s)=(=(6384s/2ΓR(s)L(s)(−0.121−0.992i)Λ(1−s)
Λ(s)=(=(6384s/2ΓR(s)L(s)(−0.121−0.992i)Λ(1−s)
Degree: |
1 |
Conductor: |
6384
= 24⋅3⋅7⋅19
|
Sign: |
−0.121−0.992i
|
Analytic conductor: |
29.6471 |
Root analytic conductor: |
29.6471 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ6384(2189,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 6384, (0: ), −0.121−0.992i)
|
Particular Values
L(21) |
≈ |
0.4662453905−0.5269505514i |
L(21) |
≈ |
0.4662453905−0.5269505514i |
L(1) |
≈ |
0.9558000470+0.1010594018i |
L(1) |
≈ |
0.9558000470+0.1010594018i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1 |
| 19 | 1 |
good | 5 | 1+(0.342+0.939i)T |
| 11 | 1+(0.866−0.5i)T |
| 13 | 1+(−0.342+0.939i)T |
| 17 | 1+(−0.939+0.342i)T |
| 23 | 1+(0.766−0.642i)T |
| 29 | 1+(−0.642−0.766i)T |
| 31 | 1−T |
| 37 | 1+(−0.866+0.5i)T |
| 41 | 1+(0.939−0.342i)T |
| 43 | 1+(−0.984−0.173i)T |
| 47 | 1+(−0.939−0.342i)T |
| 53 | 1+(0.342−0.939i)T |
| 59 | 1+(0.342+0.939i)T |
| 61 | 1+(−0.642−0.766i)T |
| 67 | 1+(−0.984+0.173i)T |
| 71 | 1+(0.173−0.984i)T |
| 73 | 1+(0.173−0.984i)T |
| 79 | 1+(0.766+0.642i)T |
| 83 | 1+(0.866−0.5i)T |
| 89 | 1+(−0.173−0.984i)T |
| 97 | 1+(−0.766−0.642i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−17.6792125397163929868178505502, −17.213577574432438552730440817334, −16.501160698668030013539113642926, −15.93752443421367666925901795084, −15.08717900213415791188645550398, −14.665501264716076401634079782425, −13.73933548251814349614263485527, −13.12576736147537297824219338940, −12.62812053692602003407159083912, −12.01624937452434466169429615438, −11.20798042759701620475206553153, −10.57941216245719750532226977964, −9.579949962100734165632105681714, −9.2705549883071176573015923409, −8.64024759897286640938293441556, −7.77506571975872074172787201566, −7.102988326752761375667350682348, −6.3845940516251856823497389486, −5.42293646112012869106927058052, −5.07280246701298380161701312462, −4.23120523247503168744688502813, −3.50757198917976411184727787172, −2.53914710045531469768877390285, −1.68453021429681951272052578120, −1.05326427289405714783201247683,
0.16887524851565332066632896918, 1.632465371928830476991736584972, 2.076082042366001182785007565221, 3.03151848973861442338713399467, 3.72919758819183521919493536616, 4.41476480138543973439279357133, 5.32265705832249479485101169585, 6.209292392158776273816515977019, 6.68205349598990967791624516336, 7.166598743413610503571115017293, 8.11986844827280446674930969027, 9.035859402556777742764350500652, 9.32817239690129494709067522936, 10.27057139028639891565547598541, 10.89854578842619726166106764904, 11.45678344918447697695457388047, 12.01426434450932611165628012728, 13.014752927715572328977190738962, 13.60408924948158458276631307858, 14.19537256436219097625424792240, 14.89224795243751071016516180012, 15.18418715879445664445064017603, 16.30107112649832884303245925243, 16.791130879481297691802728001502, 17.40854655089489444927031352644