Properties

Label 1-675-675.259-r0-0-0
Degree 11
Conductor 675675
Sign 0.8610.508i0.861 - 0.508i
Analytic cond. 3.134683.13468
Root an. cond. 3.134683.13468
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.882 − 0.469i)2-s + (0.559 − 0.829i)4-s + (0.939 + 0.342i)7-s + (0.104 − 0.994i)8-s + (0.848 + 0.529i)11-s + (0.882 + 0.469i)13-s + (0.990 − 0.139i)14-s + (−0.374 − 0.927i)16-s + (−0.913 + 0.406i)17-s + (−0.104 + 0.994i)19-s + (0.997 + 0.0697i)22-s + (0.615 + 0.788i)23-s + 26-s + (0.809 − 0.587i)28-s + (−0.719 − 0.694i)29-s + ⋯
L(s)  = 1  + (0.882 − 0.469i)2-s + (0.559 − 0.829i)4-s + (0.939 + 0.342i)7-s + (0.104 − 0.994i)8-s + (0.848 + 0.529i)11-s + (0.882 + 0.469i)13-s + (0.990 − 0.139i)14-s + (−0.374 − 0.927i)16-s + (−0.913 + 0.406i)17-s + (−0.104 + 0.994i)19-s + (0.997 + 0.0697i)22-s + (0.615 + 0.788i)23-s + 26-s + (0.809 − 0.587i)28-s + (−0.719 − 0.694i)29-s + ⋯

Functional equation

Λ(s)=(675s/2ΓR(s)L(s)=((0.8610.508i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.861 - 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(675s/2ΓR(s)L(s)=((0.8610.508i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.861 - 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 675675    =    33523^{3} \cdot 5^{2}
Sign: 0.8610.508i0.861 - 0.508i
Analytic conductor: 3.134683.13468
Root analytic conductor: 3.134683.13468
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ675(259,)\chi_{675} (259, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 675, (0: ), 0.8610.508i)(1,\ 675,\ (0:\ ),\ 0.861 - 0.508i)

Particular Values

L(12)L(\frac{1}{2}) \approx 2.7622584450.7539413882i2.762258445 - 0.7539413882i
L(12)L(\frac12) \approx 2.7622584450.7539413882i2.762258445 - 0.7539413882i
L(1)L(1) \approx 1.9427093550.4533009111i1.942709355 - 0.4533009111i
L(1)L(1) \approx 1.9427093550.4533009111i1.942709355 - 0.4533009111i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
5 1 1
good2 1+(0.8820.469i)T 1 + (0.882 - 0.469i)T
7 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
11 1+(0.848+0.529i)T 1 + (0.848 + 0.529i)T
13 1+(0.882+0.469i)T 1 + (0.882 + 0.469i)T
17 1+(0.913+0.406i)T 1 + (-0.913 + 0.406i)T
19 1+(0.104+0.994i)T 1 + (-0.104 + 0.994i)T
23 1+(0.615+0.788i)T 1 + (0.615 + 0.788i)T
29 1+(0.7190.694i)T 1 + (-0.719 - 0.694i)T
31 1+(0.961+0.275i)T 1 + (0.961 + 0.275i)T
37 1+(0.6690.743i)T 1 + (-0.669 - 0.743i)T
41 1+(0.8820.469i)T 1 + (-0.882 - 0.469i)T
43 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
47 1+(0.961+0.275i)T 1 + (-0.961 + 0.275i)T
53 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
59 1+(0.8480.529i)T 1 + (0.848 - 0.529i)T
61 1+(0.03480.999i)T 1 + (0.0348 - 0.999i)T
67 1+(0.7190.694i)T 1 + (0.719 - 0.694i)T
71 1+(0.1040.994i)T 1 + (-0.104 - 0.994i)T
73 1+(0.669+0.743i)T 1 + (-0.669 + 0.743i)T
79 1+(0.7190.694i)T 1 + (-0.719 - 0.694i)T
83 1+(0.438+0.898i)T 1 + (-0.438 + 0.898i)T
89 1+(0.6690.743i)T 1 + (0.669 - 0.743i)T
97 1+(0.2410.970i)T 1 + (0.241 - 0.970i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.80469633562564193899463501269, −22.116705829125009318509226488818, −21.32150537945372011293579950078, −20.47427136514726196188267870158, −19.95523381403429783737790551730, −18.60494891010263299682113767295, −17.6343992864506466150010786875, −17.01490682651188912771405926260, −16.12988683539932587235519979825, −15.19252780521166542738747674956, −14.61145954788056638062657010327, −13.52635275618872119366597714067, −13.274539332206901243937838529881, −11.82343940920026464981123010656, −11.339577762764698579831463721900, −10.51457722270727355145555055413, −8.766298779793409026175898213449, −8.41526969025726755206392904522, −7.09462775574903430635124196305, −6.52995584968496063550570617047, −5.35747688755287101929877869563, −4.57324532498435459828866831554, −3.6840562001207333813264387787, −2.60346664584312360357850874862, −1.26902055401810138508715588531, 1.497718707919327521993289265193, 1.9823965426151065199193493717, 3.50519595143591922825080533974, 4.24845707925616089214483222506, 5.161338887566840101011281270399, 6.15700599220203293593509832501, 6.95340713550200998741505802006, 8.23831652548530561213031179680, 9.20859891450050672789265900502, 10.2302237482380787990463407271, 11.31518201381730902874236072429, 11.64384176398676948768282974419, 12.65910714815773428514825432721, 13.567619458611965780734630704336, 14.34584841600938150692290855276, 15.0601123135294273690186718340, 15.76016827006552620675420610314, 16.936101062736827055407779288779, 17.83315735890884807354259530638, 18.80331012859509516414268325707, 19.53741446081031159279068395628, 20.50072083884887232137890650534, 21.10271621385843654685324016093, 21.75348931437269995024022046202, 22.74555365519081184681203926460

Graph of the ZZ-function along the critical line