L(s) = 1 | + (0.882 − 0.469i)2-s + (0.559 − 0.829i)4-s + (0.939 + 0.342i)7-s + (0.104 − 0.994i)8-s + (0.848 + 0.529i)11-s + (0.882 + 0.469i)13-s + (0.990 − 0.139i)14-s + (−0.374 − 0.927i)16-s + (−0.913 + 0.406i)17-s + (−0.104 + 0.994i)19-s + (0.997 + 0.0697i)22-s + (0.615 + 0.788i)23-s + 26-s + (0.809 − 0.587i)28-s + (−0.719 − 0.694i)29-s + ⋯ |
L(s) = 1 | + (0.882 − 0.469i)2-s + (0.559 − 0.829i)4-s + (0.939 + 0.342i)7-s + (0.104 − 0.994i)8-s + (0.848 + 0.529i)11-s + (0.882 + 0.469i)13-s + (0.990 − 0.139i)14-s + (−0.374 − 0.927i)16-s + (−0.913 + 0.406i)17-s + (−0.104 + 0.994i)19-s + (0.997 + 0.0697i)22-s + (0.615 + 0.788i)23-s + 26-s + (0.809 − 0.587i)28-s + (−0.719 − 0.694i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.861 - 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.861 - 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.762258445 - 0.7539413882i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.762258445 - 0.7539413882i\) |
\(L(1)\) |
\(\approx\) |
\(1.942709355 - 0.4533009111i\) |
\(L(1)\) |
\(\approx\) |
\(1.942709355 - 0.4533009111i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (0.882 - 0.469i)T \) |
| 7 | \( 1 + (0.939 + 0.342i)T \) |
| 11 | \( 1 + (0.848 + 0.529i)T \) |
| 13 | \( 1 + (0.882 + 0.469i)T \) |
| 17 | \( 1 + (-0.913 + 0.406i)T \) |
| 19 | \( 1 + (-0.104 + 0.994i)T \) |
| 23 | \( 1 + (0.615 + 0.788i)T \) |
| 29 | \( 1 + (-0.719 - 0.694i)T \) |
| 31 | \( 1 + (0.961 + 0.275i)T \) |
| 37 | \( 1 + (-0.669 - 0.743i)T \) |
| 41 | \( 1 + (-0.882 - 0.469i)T \) |
| 43 | \( 1 + (-0.766 + 0.642i)T \) |
| 47 | \( 1 + (-0.961 + 0.275i)T \) |
| 53 | \( 1 + (0.809 - 0.587i)T \) |
| 59 | \( 1 + (0.848 - 0.529i)T \) |
| 61 | \( 1 + (0.0348 - 0.999i)T \) |
| 67 | \( 1 + (0.719 - 0.694i)T \) |
| 71 | \( 1 + (-0.104 - 0.994i)T \) |
| 73 | \( 1 + (-0.669 + 0.743i)T \) |
| 79 | \( 1 + (-0.719 - 0.694i)T \) |
| 83 | \( 1 + (-0.438 + 0.898i)T \) |
| 89 | \( 1 + (0.669 - 0.743i)T \) |
| 97 | \( 1 + (0.241 - 0.970i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.80469633562564193899463501269, −22.116705829125009318509226488818, −21.32150537945372011293579950078, −20.47427136514726196188267870158, −19.95523381403429783737790551730, −18.60494891010263299682113767295, −17.6343992864506466150010786875, −17.01490682651188912771405926260, −16.12988683539932587235519979825, −15.19252780521166542738747674956, −14.61145954788056638062657010327, −13.52635275618872119366597714067, −13.274539332206901243937838529881, −11.82343940920026464981123010656, −11.339577762764698579831463721900, −10.51457722270727355145555055413, −8.766298779793409026175898213449, −8.41526969025726755206392904522, −7.09462775574903430635124196305, −6.52995584968496063550570617047, −5.35747688755287101929877869563, −4.57324532498435459828866831554, −3.6840562001207333813264387787, −2.60346664584312360357850874862, −1.26902055401810138508715588531,
1.497718707919327521993289265193, 1.9823965426151065199193493717, 3.50519595143591922825080533974, 4.24845707925616089214483222506, 5.161338887566840101011281270399, 6.15700599220203293593509832501, 6.95340713550200998741505802006, 8.23831652548530561213031179680, 9.20859891450050672789265900502, 10.2302237482380787990463407271, 11.31518201381730902874236072429, 11.64384176398676948768282974419, 12.65910714815773428514825432721, 13.567619458611965780734630704336, 14.34584841600938150692290855276, 15.0601123135294273690186718340, 15.76016827006552620675420610314, 16.936101062736827055407779288779, 17.83315735890884807354259530638, 18.80331012859509516414268325707, 19.53741446081031159279068395628, 20.50072083884887232137890650534, 21.10271621385843654685324016093, 21.75348931437269995024022046202, 22.74555365519081184681203926460