L(s) = 1 | + (0.882 − 0.469i)2-s + (0.559 − 0.829i)4-s + (0.939 + 0.342i)7-s + (0.104 − 0.994i)8-s + (0.848 + 0.529i)11-s + (0.882 + 0.469i)13-s + (0.990 − 0.139i)14-s + (−0.374 − 0.927i)16-s + (−0.913 + 0.406i)17-s + (−0.104 + 0.994i)19-s + (0.997 + 0.0697i)22-s + (0.615 + 0.788i)23-s + 26-s + (0.809 − 0.587i)28-s + (−0.719 − 0.694i)29-s + ⋯ |
L(s) = 1 | + (0.882 − 0.469i)2-s + (0.559 − 0.829i)4-s + (0.939 + 0.342i)7-s + (0.104 − 0.994i)8-s + (0.848 + 0.529i)11-s + (0.882 + 0.469i)13-s + (0.990 − 0.139i)14-s + (−0.374 − 0.927i)16-s + (−0.913 + 0.406i)17-s + (−0.104 + 0.994i)19-s + (0.997 + 0.0697i)22-s + (0.615 + 0.788i)23-s + 26-s + (0.809 − 0.587i)28-s + (−0.719 − 0.694i)29-s + ⋯ |
Λ(s)=(=(675s/2ΓR(s)L(s)(0.861−0.508i)Λ(1−s)
Λ(s)=(=(675s/2ΓR(s)L(s)(0.861−0.508i)Λ(1−s)
Degree: |
1 |
Conductor: |
675
= 33⋅52
|
Sign: |
0.861−0.508i
|
Analytic conductor: |
3.13468 |
Root analytic conductor: |
3.13468 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(259,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 675, (0: ), 0.861−0.508i)
|
Particular Values
L(21) |
≈ |
2.762258445−0.7539413882i |
L(21) |
≈ |
2.762258445−0.7539413882i |
L(1) |
≈ |
1.942709355−0.4533009111i |
L(1) |
≈ |
1.942709355−0.4533009111i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+(0.882−0.469i)T |
| 7 | 1+(0.939+0.342i)T |
| 11 | 1+(0.848+0.529i)T |
| 13 | 1+(0.882+0.469i)T |
| 17 | 1+(−0.913+0.406i)T |
| 19 | 1+(−0.104+0.994i)T |
| 23 | 1+(0.615+0.788i)T |
| 29 | 1+(−0.719−0.694i)T |
| 31 | 1+(0.961+0.275i)T |
| 37 | 1+(−0.669−0.743i)T |
| 41 | 1+(−0.882−0.469i)T |
| 43 | 1+(−0.766+0.642i)T |
| 47 | 1+(−0.961+0.275i)T |
| 53 | 1+(0.809−0.587i)T |
| 59 | 1+(0.848−0.529i)T |
| 61 | 1+(0.0348−0.999i)T |
| 67 | 1+(0.719−0.694i)T |
| 71 | 1+(−0.104−0.994i)T |
| 73 | 1+(−0.669+0.743i)T |
| 79 | 1+(−0.719−0.694i)T |
| 83 | 1+(−0.438+0.898i)T |
| 89 | 1+(0.669−0.743i)T |
| 97 | 1+(0.241−0.970i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.80469633562564193899463501269, −22.116705829125009318509226488818, −21.32150537945372011293579950078, −20.47427136514726196188267870158, −19.95523381403429783737790551730, −18.60494891010263299682113767295, −17.6343992864506466150010786875, −17.01490682651188912771405926260, −16.12988683539932587235519979825, −15.19252780521166542738747674956, −14.61145954788056638062657010327, −13.52635275618872119366597714067, −13.274539332206901243937838529881, −11.82343940920026464981123010656, −11.339577762764698579831463721900, −10.51457722270727355145555055413, −8.766298779793409026175898213449, −8.41526969025726755206392904522, −7.09462775574903430635124196305, −6.52995584968496063550570617047, −5.35747688755287101929877869563, −4.57324532498435459828866831554, −3.6840562001207333813264387787, −2.60346664584312360357850874862, −1.26902055401810138508715588531,
1.497718707919327521993289265193, 1.9823965426151065199193493717, 3.50519595143591922825080533974, 4.24845707925616089214483222506, 5.161338887566840101011281270399, 6.15700599220203293593509832501, 6.95340713550200998741505802006, 8.23831652548530561213031179680, 9.20859891450050672789265900502, 10.2302237482380787990463407271, 11.31518201381730902874236072429, 11.64384176398676948768282974419, 12.65910714815773428514825432721, 13.567619458611965780734630704336, 14.34584841600938150692290855276, 15.0601123135294273690186718340, 15.76016827006552620675420610314, 16.936101062736827055407779288779, 17.83315735890884807354259530638, 18.80331012859509516414268325707, 19.53741446081031159279068395628, 20.50072083884887232137890650534, 21.10271621385843654685324016093, 21.75348931437269995024022046202, 22.74555365519081184681203926460