L(s) = 1 | + (0.970 + 0.241i)2-s + (0.882 + 0.469i)4-s + (−0.984 + 0.173i)7-s + (0.743 + 0.669i)8-s + (−0.961 + 0.275i)11-s + (−0.970 + 0.241i)13-s + (−0.997 − 0.0697i)14-s + (0.559 + 0.829i)16-s + (−0.207 + 0.978i)17-s + (−0.669 + 0.743i)19-s + (−0.999 + 0.0348i)22-s + (−0.898 + 0.438i)23-s − 26-s + (−0.951 − 0.309i)28-s + (−0.374 − 0.927i)29-s + ⋯ |
L(s) = 1 | + (0.970 + 0.241i)2-s + (0.882 + 0.469i)4-s + (−0.984 + 0.173i)7-s + (0.743 + 0.669i)8-s + (−0.961 + 0.275i)11-s + (−0.970 + 0.241i)13-s + (−0.997 − 0.0697i)14-s + (0.559 + 0.829i)16-s + (−0.207 + 0.978i)17-s + (−0.669 + 0.743i)19-s + (−0.999 + 0.0348i)22-s + (−0.898 + 0.438i)23-s − 26-s + (−0.951 − 0.309i)28-s + (−0.374 − 0.927i)29-s + ⋯ |
Λ(s)=(=(675s/2ΓR(s)L(s)(−0.722+0.691i)Λ(1−s)
Λ(s)=(=(675s/2ΓR(s)L(s)(−0.722+0.691i)Λ(1−s)
Degree: |
1 |
Conductor: |
675
= 33⋅52
|
Sign: |
−0.722+0.691i
|
Analytic conductor: |
3.13468 |
Root analytic conductor: |
3.13468 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(317,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 675, (0: ), −0.722+0.691i)
|
Particular Values
L(21) |
≈ |
0.5464702989+1.361676130i |
L(21) |
≈ |
0.5464702989+1.361676130i |
L(1) |
≈ |
1.251395382+0.5711708183i |
L(1) |
≈ |
1.251395382+0.5711708183i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+(0.970+0.241i)T |
| 7 | 1+(−0.984+0.173i)T |
| 11 | 1+(−0.961+0.275i)T |
| 13 | 1+(−0.970+0.241i)T |
| 17 | 1+(−0.207+0.978i)T |
| 19 | 1+(−0.669+0.743i)T |
| 23 | 1+(−0.898+0.438i)T |
| 29 | 1+(−0.374−0.927i)T |
| 31 | 1+(0.990−0.139i)T |
| 37 | 1+(0.406+0.913i)T |
| 41 | 1+(0.241+0.970i)T |
| 43 | 1+(−0.342+0.939i)T |
| 47 | 1+(0.139−0.990i)T |
| 53 | 1+(0.951+0.309i)T |
| 59 | 1+(0.961+0.275i)T |
| 61 | 1+(−0.719−0.694i)T |
| 67 | 1+(−0.927−0.374i)T |
| 71 | 1+(−0.669−0.743i)T |
| 73 | 1+(0.406−0.913i)T |
| 79 | 1+(0.374+0.927i)T |
| 83 | 1+(−0.529+0.848i)T |
| 89 | 1+(0.913+0.406i)T |
| 97 | 1+(−0.788−0.615i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.383594546879477502881662132188, −21.83418103741428524407407111974, −20.86754674970531232841333065964, −20.07889006059141303349524208655, −19.41924846337659472768866794817, −18.599792929017065771990285614881, −17.44108534030414698642343818291, −16.26444614330283385339287190120, −15.8693202539693929986243928700, −14.930613931641112999107819808026, −13.98207117624367109128706744717, −13.21687450001509483098996775695, −12.57994185030767787195882574061, −11.75544144984769800296033110648, −10.61002473918668630640742698111, −10.1025845788057748475762356181, −8.98209835692785271638847822471, −7.532952597689970363434370071795, −6.8804748796235188800809755085, −5.84625680781685076908014771477, −5.00099971146622154992073651150, −4.04241635546561453851593396017, −2.86218680435264850441461634521, −2.35898170635148552874915683294, −0.45324800381059454576507341312,
1.99001563688579297710054512459, 2.790464066922587179117882382050, 3.880825322855144118215560401742, 4.741986061157230711632269281734, 5.88881866677512721187814805685, 6.43826866124459235330689726187, 7.57614396904940138973443647821, 8.29048441053529879739982414515, 9.82023926032497469903406437052, 10.36783937312279993043664804598, 11.65164191481580564477662490731, 12.40796917831689246854845372535, 13.081361826716911846852767990084, 13.782872396361808530692083962373, 15.058664220293135078281078753714, 15.29190760676028086505009339029, 16.452453397013048407042227653000, 16.94186011893772698626871224729, 18.10409854390046264257921600890, 19.29405269546056591308666076400, 19.7774614399894180686634568358, 20.87877808065230810996569485417, 21.56642623093786120015296552717, 22.28198363602482961094526319634, 23.08218708389544559567858673197