L(s) = 1 | + (0.382 − 0.923i)3-s + (−0.923 + 0.382i)7-s + (−0.707 − 0.707i)9-s + (0.923 − 0.382i)11-s + 13-s + (0.707 − 0.707i)19-s − i·21-s + (0.382 + 0.923i)23-s + (−0.923 + 0.382i)27-s + (0.382 − 0.923i)29-s + (−0.923 − 0.382i)31-s − i·33-s + (−0.382 + 0.923i)37-s + (0.382 − 0.923i)39-s + (−0.382 − 0.923i)41-s + ⋯ |
L(s) = 1 | + (0.382 − 0.923i)3-s + (−0.923 + 0.382i)7-s + (−0.707 − 0.707i)9-s + (0.923 − 0.382i)11-s + 13-s + (0.707 − 0.707i)19-s − i·21-s + (0.382 + 0.923i)23-s + (−0.923 + 0.382i)27-s + (0.382 − 0.923i)29-s + (−0.923 − 0.382i)31-s − i·33-s + (−0.382 + 0.923i)37-s + (0.382 − 0.923i)39-s + (−0.382 − 0.923i)41-s + ⋯ |
Λ(s)=(=(680s/2ΓR(s)L(s)(0.0253−0.999i)Λ(1−s)
Λ(s)=(=(680s/2ΓR(s)L(s)(0.0253−0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
680
= 23⋅5⋅17
|
Sign: |
0.0253−0.999i
|
Analytic conductor: |
3.15790 |
Root analytic conductor: |
3.15790 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ680(173,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 680, (0: ), 0.0253−0.999i)
|
Particular Values
L(21) |
≈ |
1.063573066−1.036935100i |
L(21) |
≈ |
1.063573066−1.036935100i |
L(1) |
≈ |
1.077920334−0.4430141769i |
L(1) |
≈ |
1.077920334−0.4430141769i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 17 | 1 |
good | 3 | 1+(0.382−0.923i)T |
| 7 | 1+(−0.923+0.382i)T |
| 11 | 1+(0.923−0.382i)T |
| 13 | 1+T |
| 19 | 1+(0.707−0.707i)T |
| 23 | 1+(0.382+0.923i)T |
| 29 | 1+(0.382−0.923i)T |
| 31 | 1+(−0.923−0.382i)T |
| 37 | 1+(−0.382+0.923i)T |
| 41 | 1+(−0.382−0.923i)T |
| 43 | 1+(0.707−0.707i)T |
| 47 | 1+T |
| 53 | 1+(−0.707−0.707i)T |
| 59 | 1+(−0.707−0.707i)T |
| 61 | 1+(−0.382−0.923i)T |
| 67 | 1−iT |
| 71 | 1+(0.923+0.382i)T |
| 73 | 1+(−0.923−0.382i)T |
| 79 | 1+(0.923−0.382i)T |
| 83 | 1+(0.707+0.707i)T |
| 89 | 1+iT |
| 97 | 1+(−0.923−0.382i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.742608780744832249518335966447, −22.21440778913920059788253125167, −21.274970159684185357802201451375, −20.352317803089201964530787506544, −19.936303838592230037697627078493, −19.01530594141250968019275048484, −18.03551268393171464366371280007, −16.84579954335381338752644135315, −16.32654612087276461860003591074, −15.663407792889907201490890711096, −14.5658739719539669222701740275, −14.04147907926248811409694030629, −13.011553382300510333440476720001, −12.08003855268062612908954177800, −10.90502478591197141965217623791, −10.31381803671322232900432348153, −9.289686783539868745825671448053, −8.84882420072892008417307993917, −7.591854915587268033479812847887, −6.54483536801872912777999657078, −5.632702794369386338824777495480, −4.38115668622828886049553072642, −3.6686623580599469630208040359, −2.87402228761289969255235344940, −1.323042953007801768813863532602,
0.76835104855024536708920930405, 1.924724173457023108125348986514, 3.14518874483105415189860353247, 3.74802824680753046320237347142, 5.48088727947558180760999780427, 6.314138915378437597454618318721, 6.96353599101638842920356961947, 8.03075287290665801456339657140, 9.0506367921105496544651199409, 9.44865618375920429721643872715, 10.97149132570294016311452311437, 11.80146100659898169847713476317, 12.54059643542604815430560220509, 13.60424790048205353937281486723, 13.813197424373014932270059339367, 15.16118985505565088037789122029, 15.81511267668144892905162080818, 16.9248330389792241163601215070, 17.67686906856542522394897757475, 18.72282383717853777897464232524, 19.115937285805378663633964580854, 19.9555802195576511292502592288, 20.69157230451040246129273779097, 21.88482720704507862919100342932, 22.55125369020828264059036387487