Properties

Label 1-680-680.173-r0-0-0
Degree 11
Conductor 680680
Sign 0.02530.999i0.0253 - 0.999i
Analytic cond. 3.157903.15790
Root an. cond. 3.157903.15790
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.382 − 0.923i)3-s + (−0.923 + 0.382i)7-s + (−0.707 − 0.707i)9-s + (0.923 − 0.382i)11-s + 13-s + (0.707 − 0.707i)19-s i·21-s + (0.382 + 0.923i)23-s + (−0.923 + 0.382i)27-s + (0.382 − 0.923i)29-s + (−0.923 − 0.382i)31-s i·33-s + (−0.382 + 0.923i)37-s + (0.382 − 0.923i)39-s + (−0.382 − 0.923i)41-s + ⋯
L(s)  = 1  + (0.382 − 0.923i)3-s + (−0.923 + 0.382i)7-s + (−0.707 − 0.707i)9-s + (0.923 − 0.382i)11-s + 13-s + (0.707 − 0.707i)19-s i·21-s + (0.382 + 0.923i)23-s + (−0.923 + 0.382i)27-s + (0.382 − 0.923i)29-s + (−0.923 − 0.382i)31-s i·33-s + (−0.382 + 0.923i)37-s + (0.382 − 0.923i)39-s + (−0.382 − 0.923i)41-s + ⋯

Functional equation

Λ(s)=(680s/2ΓR(s)L(s)=((0.02530.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0253 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(680s/2ΓR(s)L(s)=((0.02530.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0253 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 680680    =    235172^{3} \cdot 5 \cdot 17
Sign: 0.02530.999i0.0253 - 0.999i
Analytic conductor: 3.157903.15790
Root analytic conductor: 3.157903.15790
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ680(173,)\chi_{680} (173, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 680, (0: ), 0.02530.999i)(1,\ 680,\ (0:\ ),\ 0.0253 - 0.999i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.0635730661.036935100i1.063573066 - 1.036935100i
L(12)L(\frac12) \approx 1.0635730661.036935100i1.063573066 - 1.036935100i
L(1)L(1) \approx 1.0779203340.4430141769i1.077920334 - 0.4430141769i
L(1)L(1) \approx 1.0779203340.4430141769i1.077920334 - 0.4430141769i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
17 1 1
good3 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
7 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
11 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
13 1+T 1 + T
19 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
23 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
29 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
31 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
37 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
41 1+(0.3820.923i)T 1 + (-0.382 - 0.923i)T
43 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
47 1+T 1 + T
53 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
59 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
61 1+(0.3820.923i)T 1 + (-0.382 - 0.923i)T
67 1iT 1 - iT
71 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
73 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
79 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
83 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
89 1+iT 1 + iT
97 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.742608780744832249518335966447, −22.21440778913920059788253125167, −21.274970159684185357802201451375, −20.352317803089201964530787506544, −19.936303838592230037697627078493, −19.01530594141250968019275048484, −18.03551268393171464366371280007, −16.84579954335381338752644135315, −16.32654612087276461860003591074, −15.663407792889907201490890711096, −14.5658739719539669222701740275, −14.04147907926248811409694030629, −13.011553382300510333440476720001, −12.08003855268062612908954177800, −10.90502478591197141965217623791, −10.31381803671322232900432348153, −9.289686783539868745825671448053, −8.84882420072892008417307993917, −7.591854915587268033479812847887, −6.54483536801872912777999657078, −5.632702794369386338824777495480, −4.38115668622828886049553072642, −3.6686623580599469630208040359, −2.87402228761289969255235344940, −1.323042953007801768813863532602, 0.76835104855024536708920930405, 1.924724173457023108125348986514, 3.14518874483105415189860353247, 3.74802824680753046320237347142, 5.48088727947558180760999780427, 6.314138915378437597454618318721, 6.96353599101638842920356961947, 8.03075287290665801456339657140, 9.0506367921105496544651199409, 9.44865618375920429721643872715, 10.97149132570294016311452311437, 11.80146100659898169847713476317, 12.54059643542604815430560220509, 13.60424790048205353937281486723, 13.813197424373014932270059339367, 15.16118985505565088037789122029, 15.81511267668144892905162080818, 16.9248330389792241163601215070, 17.67686906856542522394897757475, 18.72282383717853777897464232524, 19.115937285805378663633964580854, 19.9555802195576511292502592288, 20.69157230451040246129273779097, 21.88482720704507862919100342932, 22.55125369020828264059036387487

Graph of the ZZ-function along the critical line