L(s) = 1 | + (0.382 − 0.923i)3-s + (−0.923 + 0.382i)7-s + (−0.707 − 0.707i)9-s + (0.382 + 0.923i)11-s − i·13-s + (−0.707 + 0.707i)19-s − i·21-s + (−0.382 − 0.923i)23-s + (−0.923 + 0.382i)27-s + (−0.923 − 0.382i)29-s + (−0.382 + 0.923i)31-s + 33-s + (−0.382 + 0.923i)37-s + (0.923 + 0.382i)39-s + (−0.923 + 0.382i)41-s + ⋯ |
L(s) = 1 | + (0.382 − 0.923i)3-s + (−0.923 + 0.382i)7-s + (−0.707 − 0.707i)9-s + (0.382 + 0.923i)11-s − i·13-s + (−0.707 + 0.707i)19-s − i·21-s + (−0.382 − 0.923i)23-s + (−0.923 + 0.382i)27-s + (−0.923 − 0.382i)29-s + (−0.382 + 0.923i)31-s + 33-s + (−0.382 + 0.923i)37-s + (0.923 + 0.382i)39-s + (−0.923 + 0.382i)41-s + ⋯ |
Λ(s)=(=(680s/2ΓR(s)L(s)(0.163+0.986i)Λ(1−s)
Λ(s)=(=(680s/2ΓR(s)L(s)(0.163+0.986i)Λ(1−s)
Degree: |
1 |
Conductor: |
680
= 23⋅5⋅17
|
Sign: |
0.163+0.986i
|
Analytic conductor: |
3.15790 |
Root analytic conductor: |
3.15790 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ680(379,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 680, (0: ), 0.163+0.986i)
|
Particular Values
L(21) |
≈ |
0.6043845211+0.5123074992i |
L(21) |
≈ |
0.6043845211+0.5123074992i |
L(1) |
≈ |
0.8958834694+0.02113658490i |
L(1) |
≈ |
0.8958834694+0.02113658490i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 17 | 1 |
good | 3 | 1+(0.382−0.923i)T |
| 7 | 1+(−0.923+0.382i)T |
| 11 | 1+(0.382+0.923i)T |
| 13 | 1−iT |
| 19 | 1+(−0.707+0.707i)T |
| 23 | 1+(−0.382−0.923i)T |
| 29 | 1+(−0.923−0.382i)T |
| 31 | 1+(−0.382+0.923i)T |
| 37 | 1+(−0.382+0.923i)T |
| 41 | 1+(−0.923+0.382i)T |
| 43 | 1+(0.707+0.707i)T |
| 47 | 1−iT |
| 53 | 1+(−0.707+0.707i)T |
| 59 | 1+(0.707+0.707i)T |
| 61 | 1+(−0.923+0.382i)T |
| 67 | 1+T |
| 71 | 1+(0.382−0.923i)T |
| 73 | 1+(0.923+0.382i)T |
| 79 | 1+(−0.382−0.923i)T |
| 83 | 1+(−0.707+0.707i)T |
| 89 | 1−iT |
| 97 | 1+(−0.923−0.382i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.26954337756617428156184393853, −21.92160189626595756614043400777, −20.90078173259856288114632641305, −20.03197834783220879881394316313, −19.53684854115303335640191621641, −18.66954476862502246323613491258, −17.301598905120376681707349567017, −16.77516090374792304814862582811, −15.81751597724565491422646768391, −15.32673601119151297016736137856, −14.2694403867876743658194176715, −13.47585689838080036047824454830, −12.74087529219762972488583771727, −11.36171691318209956646298862742, −10.71035544939059155271897877552, −9.83045674571804518215868464016, −9.096304515898984501425490475116, −8.24162657445486626538009149511, −7.16445096863116384733162856906, −5.96978410281245173577182269462, −5.225800722689767050281597620022, −3.78443061251514319444837554363, −3.47579555546119517841235096427, −2.25920159701676616335104148616, −0.34718932696993099703184997734,
1.534948958112068370774005653144, 2.345640865677365334857624953657, 3.452805589038426210392853661563, 4.513600711416783032155313109309, 6.02935050475304055984975593903, 6.59071296885801952079307863993, 7.40294137203033871839579885781, 8.51553568445069241629404794809, 9.26030851430790146431228953955, 10.08482032472979627251061271666, 11.42488201097791077204254021690, 12.396584619197248532123269289793, 12.67316992090670644937763246425, 13.79732202867003537105295596874, 14.53830433298055362983785465000, 15.33492293972743006380284072324, 16.490393232391420793284279925980, 17.16192653023985435240206904019, 18.2711589412610225291735520902, 18.83791633844966145534514179873, 19.54008126390012088459108242610, 20.30072247480739341893317830268, 21.17219281238601087263942780112, 22.32721627252999556530167317566, 22.91370808272665937424600817277