L(s) = 1 | + (0.923 − 0.382i)3-s + (0.382 − 0.923i)7-s + (0.707 − 0.707i)9-s + (−0.382 + 0.923i)11-s + 13-s + (−0.707 − 0.707i)19-s − i·21-s + (0.923 + 0.382i)23-s + (0.382 − 0.923i)27-s + (0.923 − 0.382i)29-s + (0.382 + 0.923i)31-s + i·33-s + (−0.923 + 0.382i)37-s + (0.923 − 0.382i)39-s + (−0.923 − 0.382i)41-s + ⋯ |
L(s) = 1 | + (0.923 − 0.382i)3-s + (0.382 − 0.923i)7-s + (0.707 − 0.707i)9-s + (−0.382 + 0.923i)11-s + 13-s + (−0.707 − 0.707i)19-s − i·21-s + (0.923 + 0.382i)23-s + (0.382 − 0.923i)27-s + (0.923 − 0.382i)29-s + (0.382 + 0.923i)31-s + i·33-s + (−0.923 + 0.382i)37-s + (0.923 − 0.382i)39-s + (−0.923 − 0.382i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.657 - 0.753i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.657 - 0.753i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.951745924 - 0.8864848242i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.951745924 - 0.8864848242i\) |
\(L(1)\) |
\(\approx\) |
\(1.498235718 - 0.3593236479i\) |
\(L(1)\) |
\(\approx\) |
\(1.498235718 - 0.3593236479i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (0.923 - 0.382i)T \) |
| 7 | \( 1 + (0.382 - 0.923i)T \) |
| 11 | \( 1 + (-0.382 + 0.923i)T \) |
| 13 | \( 1 + T \) |
| 19 | \( 1 + (-0.707 - 0.707i)T \) |
| 23 | \( 1 + (0.923 + 0.382i)T \) |
| 29 | \( 1 + (0.923 - 0.382i)T \) |
| 31 | \( 1 + (0.382 + 0.923i)T \) |
| 37 | \( 1 + (-0.923 + 0.382i)T \) |
| 41 | \( 1 + (-0.923 - 0.382i)T \) |
| 43 | \( 1 + (-0.707 - 0.707i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (0.707 - 0.707i)T \) |
| 59 | \( 1 + (0.707 - 0.707i)T \) |
| 61 | \( 1 + (-0.923 - 0.382i)T \) |
| 67 | \( 1 - iT \) |
| 71 | \( 1 + (-0.382 - 0.923i)T \) |
| 73 | \( 1 + (0.382 + 0.923i)T \) |
| 79 | \( 1 + (-0.382 + 0.923i)T \) |
| 83 | \( 1 + (-0.707 + 0.707i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (0.382 + 0.923i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.770321424930024801300846152167, −21.68492671126937770332101346703, −21.19048955434083578445313873025, −20.63629497396399881852087479756, −19.505403526336452651538410428111, −18.72548023839555976920011503088, −18.32916683937249851731173831920, −16.92684994438717084128747288591, −16.06176205203236332587900222368, −15.35837627772345928994639399801, −14.660219850226667699098023845871, −13.74674426833237312651837676137, −13.06353876700088067326685890187, −11.98560837513914083331029675154, −10.92357833573515209639195777648, −10.25202023207020860647481967577, −8.91068083464219236701274220265, −8.613237750456424285855139771493, −7.79863829012998536068595057763, −6.42643610022688948841898380715, −5.484914201153367834124953849527, −4.44361347217686753231951839811, −3.35875915754877970916389640691, −2.574769907689064180883670249695, −1.43424075172300046559203932159,
1.07220258290206145248102867384, 2.04791405354760605270277428563, 3.213959446321922453163615488349, 4.14052023482100091183224689898, 5.058001619288524828857361239997, 6.71431740028138240021190394841, 7.112058381196982128101130776973, 8.23409812608486022980792998080, 8.80675958108173701169453582766, 10.01761218283718099739918216501, 10.66366989510964171981645468550, 11.83383190049601272896880030380, 12.88626500680980720628977264642, 13.52365363212984159930960599570, 14.17961758269109634602043933468, 15.227795115952633790475808879975, 15.711870494419968076267772513354, 17.106372016552229481276850150495, 17.72008266387827692615502131445, 18.60603400009921021416773973977, 19.4705519671999203450648122845, 20.20983564496752834481033332973, 20.85663687909638034435219035888, 21.465263654830789679100661040619, 22.93130952895219350388712913967