L(s) = 1 | − 3-s + 7-s + 9-s − i·11-s − i·13-s + 19-s − 21-s − 23-s − 27-s + i·29-s − i·31-s + i·33-s − 37-s + i·39-s − i·41-s + ⋯ |
L(s) = 1 | − 3-s + 7-s + 9-s − i·11-s − i·13-s + 19-s − 21-s − 23-s − 27-s + i·29-s − i·31-s + i·33-s − 37-s + i·39-s − i·41-s + ⋯ |
Λ(s)=(=(680s/2ΓR(s)L(s)(0.346−0.937i)Λ(1−s)
Λ(s)=(=(680s/2ΓR(s)L(s)(0.346−0.937i)Λ(1−s)
Degree: |
1 |
Conductor: |
680
= 23⋅5⋅17
|
Sign: |
0.346−0.937i
|
Analytic conductor: |
3.15790 |
Root analytic conductor: |
3.15790 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ680(523,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 680, (0: ), 0.346−0.937i)
|
Particular Values
L(21) |
≈ |
0.8557475851−0.5958610731i |
L(21) |
≈ |
0.8557475851−0.5958610731i |
L(1) |
≈ |
0.8630672070−0.1765596926i |
L(1) |
≈ |
0.8630672070−0.1765596926i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 17 | 1 |
good | 3 | 1+T |
| 7 | 1−T |
| 11 | 1 |
| 13 | 1 |
| 19 | 1+T |
| 23 | 1 |
| 29 | 1+T |
| 31 | 1 |
| 37 | 1−iT |
| 41 | 1 |
| 43 | 1−iT |
| 47 | 1 |
| 53 | 1 |
| 59 | 1 |
| 61 | 1 |
| 67 | 1 |
| 71 | 1+T |
| 73 | 1 |
| 79 | 1−T |
| 83 | 1 |
| 89 | 1−T |
| 97 | 1 |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.96014151696852588850978412161, −22.0942237331739192614473374049, −21.32971135664219133508019034402, −20.64223904547135113784826962660, −19.62331470289611221717976337989, −18.49830584085125412789377762427, −17.88285309617003531883504647420, −17.31810287256225906163809701917, −16.34729600496306585412734490470, −15.62799278789867903229937583135, −14.61205712390440944450727013466, −13.81465909332051450762672829591, −12.687400080197835993458826892439, −11.71779537944226917809523704453, −11.49721093570378506892979154248, −10.23809555700394482810531565967, −9.62993760547918011452212400720, −8.31975945588761205346904361196, −7.334101647371517776735455985164, −6.611107362415511184890233470569, −5.440143390274081317987755458359, −4.727975978066337814811865364839, −3.92645685062218468108535244874, −2.12459115958700312178588790839, −1.2977819313864929308072407307,
0.646802113809041213200469767749, 1.75649262792744364828046318844, 3.26650895151819965216094454140, 4.385499032722467615170573850057, 5.47170226533864130231643879785, 5.81975703395037801057127380027, 7.19888589876619274988111153646, 7.934905300993800549318133337849, 8.96432234876426986313024739773, 10.253455052599813014955778782534, 10.82469029860791477435143166705, 11.6725872161654926481817609652, 12.31526581766121362825059189275, 13.44235980073667610826733161836, 14.20027867933164282301550533911, 15.34273070906546484682028846513, 16.03465500654641625044889465277, 16.90714853668755338672016189065, 17.73193611299030525737456357912, 18.23601947146395996940963344490, 19.11492962846611725711568610530, 20.350633655282052280782678369077, 20.95810503715195109780600773228, 22.075876511875223474831007435385, 22.31292396285236000886424856476