L(s) = 1 | − 3-s + 7-s + 9-s − i·11-s − i·13-s + 19-s − 21-s − 23-s − 27-s + i·29-s − i·31-s + i·33-s − 37-s + i·39-s − i·41-s + ⋯ |
L(s) = 1 | − 3-s + 7-s + 9-s − i·11-s − i·13-s + 19-s − 21-s − 23-s − 27-s + i·29-s − i·31-s + i·33-s − 37-s + i·39-s − i·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.346 - 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.346 - 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8557475851 - 0.5958610731i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8557475851 - 0.5958610731i\) |
\(L(1)\) |
\(\approx\) |
\(0.8630672070 - 0.1765596926i\) |
\(L(1)\) |
\(\approx\) |
\(0.8630672070 - 0.1765596926i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 \) |
| 13 | \( 1 \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 \) |
| 53 | \( 1 \) |
| 59 | \( 1 \) |
| 61 | \( 1 \) |
| 67 | \( 1 \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.96014151696852588850978412161, −22.0942237331739192614473374049, −21.32971135664219133508019034402, −20.64223904547135113784826962660, −19.62331470289611221717976337989, −18.49830584085125412789377762427, −17.88285309617003531883504647420, −17.31810287256225906163809701917, −16.34729600496306585412734490470, −15.62799278789867903229937583135, −14.61205712390440944450727013466, −13.81465909332051450762672829591, −12.687400080197835993458826892439, −11.71779537944226917809523704453, −11.49721093570378506892979154248, −10.23809555700394482810531565967, −9.62993760547918011452212400720, −8.31975945588761205346904361196, −7.334101647371517776735455985164, −6.611107362415511184890233470569, −5.440143390274081317987755458359, −4.727975978066337814811865364839, −3.92645685062218468108535244874, −2.12459115958700312178588790839, −1.2977819313864929308072407307,
0.646802113809041213200469767749, 1.75649262792744364828046318844, 3.26650895151819965216094454140, 4.385499032722467615170573850057, 5.47170226533864130231643879785, 5.81975703395037801057127380027, 7.19888589876619274988111153646, 7.934905300993800549318133337849, 8.96432234876426986313024739773, 10.253455052599813014955778782534, 10.82469029860791477435143166705, 11.6725872161654926481817609652, 12.31526581766121362825059189275, 13.44235980073667610826733161836, 14.20027867933164282301550533911, 15.34273070906546484682028846513, 16.03465500654641625044889465277, 16.90714853668755338672016189065, 17.73193611299030525737456357912, 18.23601947146395996940963344490, 19.11492962846611725711568610530, 20.350633655282052280782678369077, 20.95810503715195109780600773228, 22.075876511875223474831007435385, 22.31292396285236000886424856476