Properties

Label 1-680-680.523-r0-0-0
Degree 11
Conductor 680680
Sign 0.3460.937i0.346 - 0.937i
Analytic cond. 3.157903.15790
Root an. cond. 3.157903.15790
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s i·11-s i·13-s + 19-s − 21-s − 23-s − 27-s + i·29-s i·31-s + i·33-s − 37-s + i·39-s i·41-s + ⋯
L(s)  = 1  − 3-s + 7-s + 9-s i·11-s i·13-s + 19-s − 21-s − 23-s − 27-s + i·29-s i·31-s + i·33-s − 37-s + i·39-s i·41-s + ⋯

Functional equation

Λ(s)=(680s/2ΓR(s)L(s)=((0.3460.937i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.346 - 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(680s/2ΓR(s)L(s)=((0.3460.937i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.346 - 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 680680    =    235172^{3} \cdot 5 \cdot 17
Sign: 0.3460.937i0.346 - 0.937i
Analytic conductor: 3.157903.15790
Root analytic conductor: 3.157903.15790
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ680(523,)\chi_{680} (523, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 680, (0: ), 0.3460.937i)(1,\ 680,\ (0:\ ),\ 0.346 - 0.937i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.85574758510.5958610731i0.8557475851 - 0.5958610731i
L(12)L(\frac12) \approx 0.85574758510.5958610731i0.8557475851 - 0.5958610731i
L(1)L(1) \approx 0.86306720700.1765596926i0.8630672070 - 0.1765596926i
L(1)L(1) \approx 0.86306720700.1765596926i0.8630672070 - 0.1765596926i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
17 1 1
good3 1+T 1 + T
7 1T 1 - T
11 1 1
13 1 1
19 1+T 1 + T
23 1 1
29 1+T 1 + T
31 1 1
37 1iT 1 - iT
41 1 1
43 1iT 1 - iT
47 1 1
53 1 1
59 1 1
61 1 1
67 1 1
71 1+T 1 + T
73 1 1
79 1T 1 - T
83 1 1
89 1T 1 - T
97 1 1
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.96014151696852588850978412161, −22.0942237331739192614473374049, −21.32971135664219133508019034402, −20.64223904547135113784826962660, −19.62331470289611221717976337989, −18.49830584085125412789377762427, −17.88285309617003531883504647420, −17.31810287256225906163809701917, −16.34729600496306585412734490470, −15.62799278789867903229937583135, −14.61205712390440944450727013466, −13.81465909332051450762672829591, −12.687400080197835993458826892439, −11.71779537944226917809523704453, −11.49721093570378506892979154248, −10.23809555700394482810531565967, −9.62993760547918011452212400720, −8.31975945588761205346904361196, −7.334101647371517776735455985164, −6.611107362415511184890233470569, −5.440143390274081317987755458359, −4.727975978066337814811865364839, −3.92645685062218468108535244874, −2.12459115958700312178588790839, −1.2977819313864929308072407307, 0.646802113809041213200469767749, 1.75649262792744364828046318844, 3.26650895151819965216094454140, 4.385499032722467615170573850057, 5.47170226533864130231643879785, 5.81975703395037801057127380027, 7.19888589876619274988111153646, 7.934905300993800549318133337849, 8.96432234876426986313024739773, 10.253455052599813014955778782534, 10.82469029860791477435143166705, 11.6725872161654926481817609652, 12.31526581766121362825059189275, 13.44235980073667610826733161836, 14.20027867933164282301550533911, 15.34273070906546484682028846513, 16.03465500654641625044889465277, 16.90714853668755338672016189065, 17.73193611299030525737456357912, 18.23601947146395996940963344490, 19.11492962846611725711568610530, 20.350633655282052280782678369077, 20.95810503715195109780600773228, 22.075876511875223474831007435385, 22.31292396285236000886424856476

Graph of the ZZ-function along the critical line