L(s) = 1 | + (0.707 − 0.707i)3-s + (0.707 + 0.707i)7-s − i·9-s + (0.707 − 0.707i)11-s − i·13-s + i·19-s + 21-s + (0.707 + 0.707i)23-s + (−0.707 − 0.707i)27-s + (−0.707 − 0.707i)29-s + (−0.707 − 0.707i)31-s − i·33-s + (0.707 − 0.707i)37-s + (−0.707 − 0.707i)39-s + (−0.707 + 0.707i)41-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)3-s + (0.707 + 0.707i)7-s − i·9-s + (0.707 − 0.707i)11-s − i·13-s + i·19-s + 21-s + (0.707 + 0.707i)23-s + (−0.707 − 0.707i)27-s + (−0.707 − 0.707i)29-s + (−0.707 − 0.707i)31-s − i·33-s + (0.707 − 0.707i)37-s + (−0.707 − 0.707i)39-s + (−0.707 + 0.707i)41-s + ⋯ |
Λ(s)=(=(680s/2ΓR(s)L(s)(0.564−0.825i)Λ(1−s)
Λ(s)=(=(680s/2ΓR(s)L(s)(0.564−0.825i)Λ(1−s)
Degree: |
1 |
Conductor: |
680
= 23⋅5⋅17
|
Sign: |
0.564−0.825i
|
Analytic conductor: |
3.15790 |
Root analytic conductor: |
3.15790 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ680(587,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 680, (0: ), 0.564−0.825i)
|
Particular Values
L(21) |
≈ |
1.809411638−0.9543282547i |
L(21) |
≈ |
1.809411638−0.9543282547i |
L(1) |
≈ |
1.424106181−0.4025996502i |
L(1) |
≈ |
1.424106181−0.4025996502i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 17 | 1 |
good | 3 | 1+(0.707−0.707i)T |
| 7 | 1+(0.707+0.707i)T |
| 11 | 1+(0.707−0.707i)T |
| 13 | 1−iT |
| 19 | 1+iT |
| 23 | 1+(0.707+0.707i)T |
| 29 | 1+(−0.707−0.707i)T |
| 31 | 1+(−0.707−0.707i)T |
| 37 | 1+(0.707−0.707i)T |
| 41 | 1+(−0.707+0.707i)T |
| 43 | 1+T |
| 47 | 1−iT |
| 53 | 1+T |
| 59 | 1−iT |
| 61 | 1+(0.707−0.707i)T |
| 67 | 1+iT |
| 71 | 1+(−0.707−0.707i)T |
| 73 | 1+(−0.707+0.707i)T |
| 79 | 1+(0.707−0.707i)T |
| 83 | 1−T |
| 89 | 1+T |
| 97 | 1+(0.707−0.707i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.72267180065815144385605668069, −21.89521143521862238867371270904, −21.181284281230577727014599377395, −20.34019312633147841777660481540, −19.87221716644958674144198062379, −18.94074130257173124653938186825, −17.884209953442823814465614017246, −16.89756761645819009356124065573, −16.4190442743259816403040486991, −15.16507434908636343445346805760, −14.65439395790294386209675231504, −13.92230826843447010744403618576, −13.09792905606959415869251427086, −11.82095810548263246157669174178, −10.9808256130885753210044353222, −10.22098076644824289992108410086, −9.1435025633020552991361267542, −8.70036153947009079873912225376, −7.38509535620992576085859937595, −6.85658595983827334934119026290, −5.17319371007825785986332662974, −4.4344096500816258055723220331, −3.74250058574302464252050715711, −2.43272917815265278013874037526, −1.42958386536690474258121719637,
1.04477343671452807210959399385, 2.04830605385617402770962754432, 3.089923970784832133055245452822, 4.00560921531938509613222364851, 5.53232236039583799491496012885, 6.121470278918336553693172826429, 7.46823664871464463011188549741, 8.06010147640169449150067900527, 8.8995153738192737053896535730, 9.67168943399954287892946946403, 11.06851509924264129837285543636, 11.77303976028575209621546265494, 12.705325310271392588531680152863, 13.412116482001346133268493028740, 14.511584988878100210559829636828, 14.83901423337132772118371136082, 15.85657955733458957286366321133, 17.07896396266266489049399602607, 17.80218217208029380404293603112, 18.681911442818088975443860814001, 19.17535178530898115419850717065, 20.197396724593316834449140631499, 20.84079380561629345065828839495, 21.69360794266771169951139397852, 22.62792861406981818326236245031