Properties

Label 1-680-680.587-r0-0-0
Degree 11
Conductor 680680
Sign 0.5640.825i0.564 - 0.825i
Analytic cond. 3.157903.15790
Root an. cond. 3.157903.15790
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 − 0.707i)3-s + (0.707 + 0.707i)7-s i·9-s + (0.707 − 0.707i)11-s i·13-s + i·19-s + 21-s + (0.707 + 0.707i)23-s + (−0.707 − 0.707i)27-s + (−0.707 − 0.707i)29-s + (−0.707 − 0.707i)31-s i·33-s + (0.707 − 0.707i)37-s + (−0.707 − 0.707i)39-s + (−0.707 + 0.707i)41-s + ⋯
L(s)  = 1  + (0.707 − 0.707i)3-s + (0.707 + 0.707i)7-s i·9-s + (0.707 − 0.707i)11-s i·13-s + i·19-s + 21-s + (0.707 + 0.707i)23-s + (−0.707 − 0.707i)27-s + (−0.707 − 0.707i)29-s + (−0.707 − 0.707i)31-s i·33-s + (0.707 − 0.707i)37-s + (−0.707 − 0.707i)39-s + (−0.707 + 0.707i)41-s + ⋯

Functional equation

Λ(s)=(680s/2ΓR(s)L(s)=((0.5640.825i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.564 - 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(680s/2ΓR(s)L(s)=((0.5640.825i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.564 - 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 680680    =    235172^{3} \cdot 5 \cdot 17
Sign: 0.5640.825i0.564 - 0.825i
Analytic conductor: 3.157903.15790
Root analytic conductor: 3.157903.15790
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ680(587,)\chi_{680} (587, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 680, (0: ), 0.5640.825i)(1,\ 680,\ (0:\ ),\ 0.564 - 0.825i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.8094116380.9543282547i1.809411638 - 0.9543282547i
L(12)L(\frac12) \approx 1.8094116380.9543282547i1.809411638 - 0.9543282547i
L(1)L(1) \approx 1.4241061810.4025996502i1.424106181 - 0.4025996502i
L(1)L(1) \approx 1.4241061810.4025996502i1.424106181 - 0.4025996502i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
17 1 1
good3 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
7 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
11 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
13 1iT 1 - iT
19 1+iT 1 + iT
23 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
29 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
31 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
37 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
41 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
43 1+T 1 + T
47 1iT 1 - iT
53 1+T 1 + T
59 1iT 1 - iT
61 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
67 1+iT 1 + iT
71 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
73 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
79 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
83 1T 1 - T
89 1+T 1 + T
97 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.72267180065815144385605668069, −21.89521143521862238867371270904, −21.181284281230577727014599377395, −20.34019312633147841777660481540, −19.87221716644958674144198062379, −18.94074130257173124653938186825, −17.884209953442823814465614017246, −16.89756761645819009356124065573, −16.4190442743259816403040486991, −15.16507434908636343445346805760, −14.65439395790294386209675231504, −13.92230826843447010744403618576, −13.09792905606959415869251427086, −11.82095810548263246157669174178, −10.9808256130885753210044353222, −10.22098076644824289992108410086, −9.1435025633020552991361267542, −8.70036153947009079873912225376, −7.38509535620992576085859937595, −6.85658595983827334934119026290, −5.17319371007825785986332662974, −4.4344096500816258055723220331, −3.74250058574302464252050715711, −2.43272917815265278013874037526, −1.42958386536690474258121719637, 1.04477343671452807210959399385, 2.04830605385617402770962754432, 3.089923970784832133055245452822, 4.00560921531938509613222364851, 5.53232236039583799491496012885, 6.121470278918336553693172826429, 7.46823664871464463011188549741, 8.06010147640169449150067900527, 8.8995153738192737053896535730, 9.67168943399954287892946946403, 11.06851509924264129837285543636, 11.77303976028575209621546265494, 12.705325310271392588531680152863, 13.412116482001346133268493028740, 14.511584988878100210559829636828, 14.83901423337132772118371136082, 15.85657955733458957286366321133, 17.07896396266266489049399602607, 17.80218217208029380404293603112, 18.681911442818088975443860814001, 19.17535178530898115419850717065, 20.197396724593316834449140631499, 20.84079380561629345065828839495, 21.69360794266771169951139397852, 22.62792861406981818326236245031

Graph of the ZZ-function along the critical line