L(s) = 1 | + (−0.978 − 0.207i)2-s + (0.913 + 0.406i)4-s + (−0.309 + 0.951i)5-s + (−0.809 − 0.587i)8-s + (0.5 − 0.866i)10-s + (0.978 + 0.207i)13-s + (0.669 + 0.743i)16-s + (0.669 + 0.743i)17-s + (0.104 − 0.994i)19-s + (−0.669 + 0.743i)20-s − 23-s + (−0.809 − 0.587i)25-s + (−0.913 − 0.406i)26-s + (0.913 + 0.406i)29-s + (0.669 − 0.743i)31-s + (−0.5 − 0.866i)32-s + ⋯ |
L(s) = 1 | + (−0.978 − 0.207i)2-s + (0.913 + 0.406i)4-s + (−0.309 + 0.951i)5-s + (−0.809 − 0.587i)8-s + (0.5 − 0.866i)10-s + (0.978 + 0.207i)13-s + (0.669 + 0.743i)16-s + (0.669 + 0.743i)17-s + (0.104 − 0.994i)19-s + (−0.669 + 0.743i)20-s − 23-s + (−0.809 − 0.587i)25-s + (−0.913 − 0.406i)26-s + (0.913 + 0.406i)29-s + (0.669 − 0.743i)31-s + (−0.5 − 0.866i)32-s + ⋯ |
Λ(s)=(=(693s/2ΓR(s)L(s)(0.647+0.762i)Λ(1−s)
Λ(s)=(=(693s/2ΓR(s)L(s)(0.647+0.762i)Λ(1−s)
Degree: |
1 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
0.647+0.762i
|
Analytic conductor: |
3.21827 |
Root analytic conductor: |
3.21827 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(128,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 693, (0: ), 0.647+0.762i)
|
Particular Values
L(21) |
≈ |
0.7970334262+0.3686792142i |
L(21) |
≈ |
0.7970334262+0.3686792142i |
L(1) |
≈ |
0.7215744209+0.1130824716i |
L(1) |
≈ |
0.7215744209+0.1130824716i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 11 | 1 |
good | 2 | 1+(−0.978−0.207i)T |
| 5 | 1+(−0.309+0.951i)T |
| 13 | 1+(0.978+0.207i)T |
| 17 | 1+(0.669+0.743i)T |
| 19 | 1+(0.104−0.994i)T |
| 23 | 1−T |
| 29 | 1+(0.913+0.406i)T |
| 31 | 1+(0.669−0.743i)T |
| 37 | 1+(0.913+0.406i)T |
| 41 | 1+(0.913−0.406i)T |
| 43 | 1+(0.5+0.866i)T |
| 47 | 1+(−0.913+0.406i)T |
| 53 | 1+(0.978+0.207i)T |
| 59 | 1+(−0.913−0.406i)T |
| 61 | 1+(−0.669−0.743i)T |
| 67 | 1+(−0.5−0.866i)T |
| 71 | 1+(−0.309+0.951i)T |
| 73 | 1+(0.104+0.994i)T |
| 79 | 1+(0.978+0.207i)T |
| 83 | 1+(−0.978+0.207i)T |
| 89 | 1+(0.5+0.866i)T |
| 97 | 1+(0.669−0.743i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.91040087833409292164620938769, −21.26350477670723492781131362400, −20.84762421648043526514743973709, −19.99465141394682620721300632315, −19.35073692794420459093164737171, −18.32764216939497799331947996027, −17.78861969684702629992354318299, −16.63938333267784798181452007565, −16.20884562332381255168962839285, −15.5529206228838396069986982953, −14.41813471094808619127548360526, −13.47744202977028760163784746745, −12.19979615433958230432040179519, −11.79599120576081144700975182485, −10.60951797366134672922514221089, −9.81723158781421898197955460333, −8.91893663243235905172277903003, −8.15250643356348174413659193376, −7.55145899921482547689340565699, −6.21952839184760263897435579089, −5.53577329195478681152024130432, −4.27509374319073033095823838193, −3.05635463759805387883318057546, −1.658078241876461990188394226963, −0.74004967966945731329510277618,
1.06771303235602550972732484236, 2.35911376563722210313330806003, 3.23520099630358055576976767394, 4.20889789092859948397137456779, 6.0346753851905906950946954229, 6.5487048804976368416074753153, 7.67983072840065075210912935136, 8.24939709513090772164437317025, 9.36551407599616945333828242657, 10.22368101874516011273401622630, 10.987578012027614437813271678043, 11.603766823362824778890332868259, 12.568521833865965154190266771054, 13.73600909148196369943279700068, 14.7260631810002262957304903726, 15.59906223523618077422212152929, 16.191439406151567991456166926216, 17.27542809438656451962904044598, 18.0587190745759740839021981752, 18.630555750715682931141683496, 19.4664864101689741551467724749, 20.04507412894952047949060229289, 21.20906998087592852957183813823, 21.70687300837094211447097340220, 22.7806525414376651317804979343