L(s) = 1 | + (0.978 + 0.207i)2-s + (0.913 + 0.406i)4-s + (0.978 − 0.207i)5-s + (0.809 + 0.587i)8-s + 10-s + (0.669 − 0.743i)13-s + (0.669 + 0.743i)16-s + (0.309 − 0.951i)17-s + (−0.809 − 0.587i)19-s + (0.978 + 0.207i)20-s + (−0.5 − 0.866i)23-s + (0.913 − 0.406i)25-s + (0.809 − 0.587i)26-s + (0.104 + 0.994i)29-s + (−0.669 + 0.743i)31-s + (0.5 + 0.866i)32-s + ⋯ |
L(s) = 1 | + (0.978 + 0.207i)2-s + (0.913 + 0.406i)4-s + (0.978 − 0.207i)5-s + (0.809 + 0.587i)8-s + 10-s + (0.669 − 0.743i)13-s + (0.669 + 0.743i)16-s + (0.309 − 0.951i)17-s + (−0.809 − 0.587i)19-s + (0.978 + 0.207i)20-s + (−0.5 − 0.866i)23-s + (0.913 − 0.406i)25-s + (0.809 − 0.587i)26-s + (0.104 + 0.994i)29-s + (−0.669 + 0.743i)31-s + (0.5 + 0.866i)32-s + ⋯ |
Λ(s)=(=(693s/2ΓR(s)L(s)(0.994+0.104i)Λ(1−s)
Λ(s)=(=(693s/2ΓR(s)L(s)(0.994+0.104i)Λ(1−s)
Degree: |
1 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
0.994+0.104i
|
Analytic conductor: |
3.21827 |
Root analytic conductor: |
3.21827 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(139,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 693, (0: ), 0.994+0.104i)
|
Particular Values
L(21) |
≈ |
3.287685947+0.1727612488i |
L(21) |
≈ |
3.287685947+0.1727612488i |
L(1) |
≈ |
2.239908734+0.1498800839i |
L(1) |
≈ |
2.239908734+0.1498800839i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 11 | 1 |
good | 2 | 1+(0.978+0.207i)T |
| 5 | 1+(0.978−0.207i)T |
| 13 | 1+(0.669−0.743i)T |
| 17 | 1+(0.309−0.951i)T |
| 19 | 1+(−0.809−0.587i)T |
| 23 | 1+(−0.5−0.866i)T |
| 29 | 1+(0.104+0.994i)T |
| 31 | 1+(−0.669+0.743i)T |
| 37 | 1+(−0.809+0.587i)T |
| 41 | 1+(−0.104+0.994i)T |
| 43 | 1+(0.5−0.866i)T |
| 47 | 1+(−0.913+0.406i)T |
| 53 | 1+(0.309+0.951i)T |
| 59 | 1+(−0.913−0.406i)T |
| 61 | 1+(0.669+0.743i)T |
| 67 | 1+(−0.5−0.866i)T |
| 71 | 1+(0.309−0.951i)T |
| 73 | 1+(−0.809+0.587i)T |
| 79 | 1+(0.978+0.207i)T |
| 83 | 1+(0.669+0.743i)T |
| 89 | 1−T |
| 97 | 1+(0.978+0.207i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.61920750891218258564063429400, −21.70047030687649263879490739140, −21.2136746050238482616072355556, −20.620654590183846511167446886712, −19.39100159779084354901046722623, −18.845067293683744795553754145896, −17.66803540190110700296226725425, −16.829817479365749513507968553143, −16.00056572726707846687837726957, −14.949795461943155130209900790235, −14.31668483782519872116003670044, −13.51235673966195358097256339602, −12.89724155704829269575139036602, −11.91454329581411890198408999817, −10.9789727454255128584350248040, −10.24667250094860138544002908246, −9.37576869988910668437888195746, −8.12150512639492419447338250749, −6.90919325758338002686504466672, −6.06222396088647521518425905760, −5.56490947626119868376857475701, −4.23844682624331233575880471031, −3.5015514728284213711627251161, −2.14315995232039463604823977777, −1.59362849958098197500200156460,
1.35365301087204146301922415931, 2.49586391665703685077596615639, 3.34018292329332334622079727905, 4.653409363711673107499457547779, 5.33757814954631043660791864533, 6.246022399861904464898497471716, 6.96705475978490963582442436645, 8.18169062350160141322527747987, 9.08089093779208639666617378059, 10.35815331361592414388180495934, 10.922339716859829627157317483241, 12.17332005890289892471083778253, 12.836524328576352071004935914167, 13.623241167487482717416854902097, 14.26026242490766357674297985034, 15.145651468506053160247113495648, 16.10498974686826102229692907854, 16.73807330422269540532663887086, 17.71552760090339120472703019895, 18.42743746255005525965216705649, 19.80021655425968087842039881997, 20.525267695231047100249146340991, 21.12837012188667356935544281267, 21.96939696227396878891518879857, 22.58254821811555984885104301275