L(s) = 1 | + (0.309 − 0.951i)2-s + (−0.809 − 0.587i)4-s + (0.669 − 0.743i)5-s + (−0.809 + 0.587i)8-s + (−0.5 − 0.866i)10-s + (0.669 + 0.743i)13-s + (0.309 + 0.951i)16-s + (0.669 − 0.743i)17-s + (−0.104 − 0.994i)19-s + (−0.978 + 0.207i)20-s + (−0.5 − 0.866i)23-s + (−0.104 − 0.994i)25-s + (0.913 − 0.406i)26-s + (−0.104 + 0.994i)29-s + (0.309 − 0.951i)31-s + 32-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)2-s + (−0.809 − 0.587i)4-s + (0.669 − 0.743i)5-s + (−0.809 + 0.587i)8-s + (−0.5 − 0.866i)10-s + (0.669 + 0.743i)13-s + (0.309 + 0.951i)16-s + (0.669 − 0.743i)17-s + (−0.104 − 0.994i)19-s + (−0.978 + 0.207i)20-s + (−0.5 − 0.866i)23-s + (−0.104 − 0.994i)25-s + (0.913 − 0.406i)26-s + (−0.104 + 0.994i)29-s + (0.309 − 0.951i)31-s + 32-s + ⋯ |
Λ(s)=(=(693s/2ΓR(s)L(s)(−0.838−0.544i)Λ(1−s)
Λ(s)=(=(693s/2ΓR(s)L(s)(−0.838−0.544i)Λ(1−s)
Degree: |
1 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
−0.838−0.544i
|
Analytic conductor: |
3.21827 |
Root analytic conductor: |
3.21827 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(25,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 693, (0: ), −0.838−0.544i)
|
Particular Values
L(21) |
≈ |
0.4602371883−1.553400029i |
L(21) |
≈ |
0.4602371883−1.553400029i |
L(1) |
≈ |
0.9210599621−0.8599996112i |
L(1) |
≈ |
0.9210599621−0.8599996112i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 11 | 1 |
good | 2 | 1+(0.309−0.951i)T |
| 5 | 1+(0.669−0.743i)T |
| 13 | 1+(0.669+0.743i)T |
| 17 | 1+(0.669−0.743i)T |
| 19 | 1+(−0.104−0.994i)T |
| 23 | 1+(−0.5−0.866i)T |
| 29 | 1+(−0.104+0.994i)T |
| 31 | 1+(0.309−0.951i)T |
| 37 | 1+(0.913−0.406i)T |
| 41 | 1+(−0.104−0.994i)T |
| 43 | 1+(−0.5−0.866i)T |
| 47 | 1+(−0.809+0.587i)T |
| 53 | 1+(−0.978+0.207i)T |
| 59 | 1+(−0.809−0.587i)T |
| 61 | 1+(0.309+0.951i)T |
| 67 | 1+T |
| 71 | 1+(0.309+0.951i)T |
| 73 | 1+(−0.104+0.994i)T |
| 79 | 1+(0.309−0.951i)T |
| 83 | 1+(0.669−0.743i)T |
| 89 | 1+(−0.5+0.866i)T |
| 97 | 1+(−0.978+0.207i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.11879243378584474815837740441, −22.362914756227076302699014426565, −21.46968705059078138581512033310, −21.00276549203141764101005476014, −19.61904652781902580203305854759, −18.557163394726092803647846921605, −18.04562278604806749155196750084, −17.22836038672286471381853201408, −16.46243153590178100007688900897, −15.44444719009395098870516993833, −14.805508504037972636903786880865, −14.01911151561399068537091571777, −13.299002996802840634937218012690, −12.483039013817819308198551942637, −11.322455955237596821724699374498, −10.14971647243575139776028721372, −9.59761934197427663118466335018, −8.20992532610261965525445250738, −7.77066366745214187865467177483, −6.411494639770004510822786328896, −6.04426337136906226883770503128, −5.09295026848283863044015450975, −3.749050544667117934244606775838, −3.06492815036259034927933483814, −1.50652789291116463477407312514,
0.75212391732114212006095292989, 1.823896730263898838463244534140, 2.75837788700215204727244630836, 4.015707012732671534929729056189, 4.8382958071605580113611694220, 5.683776208200368273483272471453, 6.66780005886360404460354066758, 8.21840483264823412322220317465, 9.09968146186841920200925937832, 9.64329792348385102222923189595, 10.66712675643090071648712414549, 11.52983979627994544105913899878, 12.37501877969586459891839655710, 13.14851391902964557920814301070, 13.87206046022955577176252393476, 14.52810798260261329427036477052, 15.82136196602976871740915904079, 16.67770278381631715308042898304, 17.617816375648770469128319431459, 18.41544862739145292167789951852, 19.10928742089286609671308659700, 20.34091007647004835860872348685, 20.52857941467244708889720244614, 21.54589857880654408986422190530, 22.0339779820790495607477087475