L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 + 0.866i)4-s − 5-s + 8-s + (0.5 + 0.866i)10-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + (−0.5 − 0.866i)17-s + (0.5 − 0.866i)19-s + (0.5 − 0.866i)20-s − 23-s + 25-s + (0.5 − 0.866i)26-s + (−0.5 + 0.866i)29-s + (−0.5 + 0.866i)31-s + (−0.5 + 0.866i)32-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 + 0.866i)4-s − 5-s + 8-s + (0.5 + 0.866i)10-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + (−0.5 − 0.866i)17-s + (0.5 − 0.866i)19-s + (0.5 − 0.866i)20-s − 23-s + 25-s + (0.5 − 0.866i)26-s + (−0.5 + 0.866i)29-s + (−0.5 + 0.866i)31-s + (−0.5 + 0.866i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.805 + 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.805 + 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5360900049 + 0.1760960544i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5360900049 + 0.1760960544i\) |
\(L(1)\) |
\(\approx\) |
\(0.6080753037 - 0.1303986076i\) |
\(L(1)\) |
\(\approx\) |
\(0.6080753037 - 0.1303986076i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + (0.5 + 0.866i)T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.5 + 0.866i)T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.80305115797802716828628419357, −22.16213509781419241935135155536, −20.713830149929332418663206007171, −19.93185695073101569711190830966, −19.25891758769124511858845811437, −18.383771922264737380759448364706, −17.74742396666492745717528271428, −16.67060476106497601336525872322, −16.06152655737370681873114388374, −15.23682447206393764287489413754, −14.72930915386625787631631996017, −13.591169707331299699928850924913, −12.72673839827670040072952235899, −11.60383369740638368263471700558, −10.6996224236016427626769958689, −9.90200132088691840539954318677, −8.75394888390677208866140702503, −8.00714983490002207536317510877, −7.49391815320297455074610484768, −6.2751970621488979762235728752, −5.56355934888621978123952293046, −4.30825474984036596068154420183, −3.56312509962547293896148575124, −1.82642537722738189147419384378, −0.39410316643923769480489398755,
1.06317259218063687051983044075, 2.344706130246995665700016991786, 3.422701962272879002058319609319, 4.19398563763127786504041782536, 5.1357644321695903418898662779, 6.88442163316802297524589104362, 7.458321122587492295260099057745, 8.67579609503324411488824731409, 9.06502037415165436292620073327, 10.28959123679291261647935114664, 11.1836394193173492445059545660, 11.72969787418604211677801773820, 12.47713181538750838376137944, 13.548423521338536255765780726779, 14.26870769618285258163138234225, 15.71668098368948872672971989397, 16.12697814878184627478448189324, 17.15341446334154208355987932735, 18.16798113309083133434041662881, 18.71112313661937231657632917627, 19.58324838903521845378608061586, 20.234026157174003570859902467923, 20.8514125956368601348766731968, 22.07938357159106042202134399328, 22.39332208303111144897615043886