Properties

Label 1-693-693.32-r0-0-0
Degree 11
Conductor 693693
Sign 0.805+0.592i0.805 + 0.592i
Analytic cond. 3.218273.21827
Root an. cond. 3.218273.21827
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (−0.5 + 0.866i)4-s − 5-s + 8-s + (0.5 + 0.866i)10-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + (−0.5 − 0.866i)17-s + (0.5 − 0.866i)19-s + (0.5 − 0.866i)20-s − 23-s + 25-s + (0.5 − 0.866i)26-s + (−0.5 + 0.866i)29-s + (−0.5 + 0.866i)31-s + (−0.5 + 0.866i)32-s + ⋯
L(s)  = 1  + (−0.5 − 0.866i)2-s + (−0.5 + 0.866i)4-s − 5-s + 8-s + (0.5 + 0.866i)10-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + (−0.5 − 0.866i)17-s + (0.5 − 0.866i)19-s + (0.5 − 0.866i)20-s − 23-s + 25-s + (0.5 − 0.866i)26-s + (−0.5 + 0.866i)29-s + (−0.5 + 0.866i)31-s + (−0.5 + 0.866i)32-s + ⋯

Functional equation

Λ(s)=(693s/2ΓR(s)L(s)=((0.805+0.592i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.805 + 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(693s/2ΓR(s)L(s)=((0.805+0.592i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.805 + 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 693693    =    327113^{2} \cdot 7 \cdot 11
Sign: 0.805+0.592i0.805 + 0.592i
Analytic conductor: 3.218273.21827
Root analytic conductor: 3.218273.21827
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ693(32,)\chi_{693} (32, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 693, (0: ), 0.805+0.592i)(1,\ 693,\ (0:\ ),\ 0.805 + 0.592i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.5360900049+0.1760960544i0.5360900049 + 0.1760960544i
L(12)L(\frac12) \approx 0.5360900049+0.1760960544i0.5360900049 + 0.1760960544i
L(1)L(1) \approx 0.60807530370.1303986076i0.6080753037 - 0.1303986076i
L(1)L(1) \approx 0.60807530370.1303986076i0.6080753037 - 0.1303986076i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
11 1 1
good2 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
5 1T 1 - T
13 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
17 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
19 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
23 1T 1 - T
29 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
31 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
37 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
41 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
43 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
47 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
53 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
59 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
61 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
67 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
71 1T 1 - T
73 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
79 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
83 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
89 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
97 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.80305115797802716828628419357, −22.16213509781419241935135155536, −20.713830149929332418663206007171, −19.93185695073101569711190830966, −19.25891758769124511858845811437, −18.383771922264737380759448364706, −17.74742396666492745717528271428, −16.67060476106497601336525872322, −16.06152655737370681873114388374, −15.23682447206393764287489413754, −14.72930915386625787631631996017, −13.591169707331299699928850924913, −12.72673839827670040072952235899, −11.60383369740638368263471700558, −10.6996224236016427626769958689, −9.90200132088691840539954318677, −8.75394888390677208866140702503, −8.00714983490002207536317510877, −7.49391815320297455074610484768, −6.2751970621488979762235728752, −5.56355934888621978123952293046, −4.30825474984036596068154420183, −3.56312509962547293896148575124, −1.82642537722738189147419384378, −0.39410316643923769480489398755, 1.06317259218063687051983044075, 2.344706130246995665700016991786, 3.422701962272879002058319609319, 4.19398563763127786504041782536, 5.1357644321695903418898662779, 6.88442163316802297524589104362, 7.458321122587492295260099057745, 8.67579609503324411488824731409, 9.06502037415165436292620073327, 10.28959123679291261647935114664, 11.1836394193173492445059545660, 11.72969787418604211677801773820, 12.47713181538750838376137944, 13.548423521338536255765780726779, 14.26870769618285258163138234225, 15.71668098368948872672971989397, 16.12697814878184627478448189324, 17.15341446334154208355987932735, 18.16798113309083133434041662881, 18.71112313661937231657632917627, 19.58324838903521845378608061586, 20.234026157174003570859902467923, 20.8514125956368601348766731968, 22.07938357159106042202134399328, 22.39332208303111144897615043886

Graph of the ZZ-function along the critical line