L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.978 − 0.207i)5-s + (0.809 + 0.587i)8-s + (−0.5 − 0.866i)10-s + (−0.978 − 0.207i)13-s + (0.309 − 0.951i)16-s + (0.978 − 0.207i)17-s + (0.913 − 0.406i)19-s + (−0.669 + 0.743i)20-s + (0.5 + 0.866i)23-s + (0.913 − 0.406i)25-s + (0.104 + 0.994i)26-s + (−0.913 − 0.406i)29-s + (0.309 + 0.951i)31-s − 32-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.978 − 0.207i)5-s + (0.809 + 0.587i)8-s + (−0.5 − 0.866i)10-s + (−0.978 − 0.207i)13-s + (0.309 − 0.951i)16-s + (0.978 − 0.207i)17-s + (0.913 − 0.406i)19-s + (−0.669 + 0.743i)20-s + (0.5 + 0.866i)23-s + (0.913 − 0.406i)25-s + (0.104 + 0.994i)26-s + (−0.913 − 0.406i)29-s + (0.309 + 0.951i)31-s − 32-s + ⋯ |
Λ(s)=(=(693s/2ΓR(s+1)L(s)(0.00469−0.999i)Λ(1−s)
Λ(s)=(=(693s/2ΓR(s+1)L(s)(0.00469−0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
0.00469−0.999i
|
Analytic conductor: |
74.4731 |
Root analytic conductor: |
74.4731 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(389,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 693, (1: ), 0.00469−0.999i)
|
Particular Values
L(21) |
≈ |
1.391404106−1.397951705i |
L(21) |
≈ |
1.391404106−1.397951705i |
L(1) |
≈ |
0.9514991692−0.4969040721i |
L(1) |
≈ |
0.9514991692−0.4969040721i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 11 | 1 |
good | 2 | 1+(−0.309−0.951i)T |
| 5 | 1+(0.978−0.207i)T |
| 13 | 1+(−0.978−0.207i)T |
| 17 | 1+(0.978−0.207i)T |
| 19 | 1+(0.913−0.406i)T |
| 23 | 1+(0.5+0.866i)T |
| 29 | 1+(−0.913−0.406i)T |
| 31 | 1+(0.309+0.951i)T |
| 37 | 1+(−0.104−0.994i)T |
| 41 | 1+(−0.913+0.406i)T |
| 43 | 1+(−0.5−0.866i)T |
| 47 | 1+(0.809+0.587i)T |
| 53 | 1+(−0.669+0.743i)T |
| 59 | 1+(0.809−0.587i)T |
| 61 | 1+(0.309−0.951i)T |
| 67 | 1+T |
| 71 | 1+(−0.309+0.951i)T |
| 73 | 1+(0.913+0.406i)T |
| 79 | 1+(0.309+0.951i)T |
| 83 | 1+(0.978−0.207i)T |
| 89 | 1+(0.5−0.866i)T |
| 97 | 1+(0.669−0.743i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.481283756833919031654050530317, −22.266069431490843231453996355615, −21.12476433065867941291900392730, −20.24351161525675189404139791323, −18.987478427240905167167275074230, −18.551492145316678634276427943350, −17.63240635681077190825963345844, −16.82813883148626161981221333429, −16.45028147856412530975444497054, −15.037347555181500199159583441652, −14.61652755702344107796928984979, −13.76370082520327170774871367276, −12.99705091176316831288830020299, −11.913705569672321251195724385900, −10.51662143092917972242000751602, −9.85994783685776441159758844374, −9.23032689841319933212466977655, −8.11932600743509143872151861946, −7.23491971167263030597053427390, −6.416995806889980459785547481359, −5.483272800661029789627235462191, −4.849731634903253580291481007820, −3.41554635054488888656471561938, −2.052415649086815575239371026296, −0.88288758798442281881666896302,
0.66784327965445943656246905870, 1.682276612583694398844999862808, 2.67146772118413858136451521274, 3.567266904574313461539355742024, 5.01950438200562613826390146472, 5.44884817629181297900939622, 7.033210708896354726932783033210, 7.91235729829268037629318702116, 9.11278369405642232503977332515, 9.65622591684299380670830474366, 10.340252356523956125996406651751, 11.38242044184213812279152380450, 12.25877051721814054697359944880, 12.97716808773556881560021877931, 13.859537288012681686483720380625, 14.46905443765129631915189204361, 15.825622380393254620740904204402, 17.04358574202146331013850899565, 17.30792821062147928813953423766, 18.289396995806529481944322856377, 18.99645947020321365077809748889, 19.96887309806067371272546839273, 20.60313717502201659994535673871, 21.46219994455171227968670379958, 21.97556070640701472307780747684