Properties

Label 1-693-693.391-r0-0-0
Degree 11
Conductor 693693
Sign 0.9080.418i0.908 - 0.418i
Analytic cond. 3.218273.21827
Root an. cond. 3.218273.21827
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.104 + 0.994i)2-s + (−0.978 + 0.207i)4-s + (0.104 − 0.994i)5-s + (−0.309 − 0.951i)8-s + 10-s + (0.913 + 0.406i)13-s + (0.913 − 0.406i)16-s + (−0.809 − 0.587i)17-s + (0.309 + 0.951i)19-s + (0.104 + 0.994i)20-s + (−0.5 − 0.866i)23-s + (−0.978 − 0.207i)25-s + (−0.309 + 0.951i)26-s + (−0.669 − 0.743i)29-s + (−0.913 − 0.406i)31-s + (0.5 + 0.866i)32-s + ⋯
L(s)  = 1  + (0.104 + 0.994i)2-s + (−0.978 + 0.207i)4-s + (0.104 − 0.994i)5-s + (−0.309 − 0.951i)8-s + 10-s + (0.913 + 0.406i)13-s + (0.913 − 0.406i)16-s + (−0.809 − 0.587i)17-s + (0.309 + 0.951i)19-s + (0.104 + 0.994i)20-s + (−0.5 − 0.866i)23-s + (−0.978 − 0.207i)25-s + (−0.309 + 0.951i)26-s + (−0.669 − 0.743i)29-s + (−0.913 − 0.406i)31-s + (0.5 + 0.866i)32-s + ⋯

Functional equation

Λ(s)=(693s/2ΓR(s)L(s)=((0.9080.418i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.908 - 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(693s/2ΓR(s)L(s)=((0.9080.418i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.908 - 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 693693    =    327113^{2} \cdot 7 \cdot 11
Sign: 0.9080.418i0.908 - 0.418i
Analytic conductor: 3.218273.21827
Root analytic conductor: 3.218273.21827
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ693(391,)\chi_{693} (391, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 693, (0: ), 0.9080.418i)(1,\ 693,\ (0:\ ),\ 0.908 - 0.418i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.0835524290.2376428423i1.083552429 - 0.2376428423i
L(12)L(\frac12) \approx 1.0835524290.2376428423i1.083552429 - 0.2376428423i
L(1)L(1) \approx 0.9585804801+0.1737218602i0.9585804801 + 0.1737218602i
L(1)L(1) \approx 0.9585804801+0.1737218602i0.9585804801 + 0.1737218602i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
11 1 1
good2 1+(0.104+0.994i)T 1 + (0.104 + 0.994i)T
5 1+(0.1040.994i)T 1 + (0.104 - 0.994i)T
13 1+(0.913+0.406i)T 1 + (0.913 + 0.406i)T
17 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
19 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
23 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
29 1+(0.6690.743i)T 1 + (-0.669 - 0.743i)T
31 1+(0.9130.406i)T 1 + (-0.913 - 0.406i)T
37 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
41 1+(0.6690.743i)T 1 + (0.669 - 0.743i)T
43 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
47 1+(0.978+0.207i)T 1 + (0.978 + 0.207i)T
53 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
59 1+(0.9780.207i)T 1 + (0.978 - 0.207i)T
61 1+(0.9130.406i)T 1 + (0.913 - 0.406i)T
67 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
71 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
73 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
79 1+(0.104+0.994i)T 1 + (0.104 + 0.994i)T
83 1+(0.9130.406i)T 1 + (0.913 - 0.406i)T
89 1T 1 - T
97 1+(0.104+0.994i)T 1 + (0.104 + 0.994i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.30192360656314714964626393715, −22.081251816160567762786174828168, −21.17681468112283434531677851548, −20.19978960306602639599539008698, −19.57835019738186590968780385640, −18.70982842796235026952274526640, −17.924398916699451413101905874923, −17.53699998423087402242880769216, −16.03953288380468567057206806503, −15.09749532674597129423739245387, −14.3562480331136180811586758998, −13.388764121347985408805976432392, −12.91953899644304667789001542839, −11.52617080250032270239656952948, −11.11669065281782120811284055585, −10.33472891113043640278928890951, −9.4154052368399954630586842850, −8.52828577479757609826011297558, −7.41941392616699336353303973195, −6.27317788400347256118140954869, −5.38806625654898223188527959151, −4.10740462775854631319543704372, −3.32170435478827004499299507403, −2.42349272336398165615854284414, −1.32120815240327127693277568415, 0.55995768445746074704506512848, 2.00995095028354716518550142042, 3.81011364167148527023382431165, 4.376282622000601889166344751, 5.53974604541123973854843350738, 6.10469359176281008486620535519, 7.29017585404362737544388596224, 8.14982181952350786782476427484, 8.99036856392971212945816089042, 9.53160881730138300718159149768, 10.83946342291921483649230072653, 12.069631577155477223747162968945, 12.818964707163825067410879272321, 13.65238392219101716110818884347, 14.27215089063326338212666234359, 15.433066770932970346846690319211, 16.16013311417892397689276305552, 16.6310770727199824209468649290, 17.58448356679189140366645228645, 18.33490515831698014569558260884, 19.155886040312792851223527993510, 20.45644708522810833198447919745, 20.88906260603639187848485878202, 22.04902727383879485279146031783, 22.71804317397440559609982213554

Graph of the ZZ-function along the critical line