L(s) = 1 | + (0.104 + 0.994i)2-s + (−0.978 + 0.207i)4-s + (0.104 − 0.994i)5-s + (−0.309 − 0.951i)8-s + 10-s + (0.913 + 0.406i)13-s + (0.913 − 0.406i)16-s + (−0.809 − 0.587i)17-s + (0.309 + 0.951i)19-s + (0.104 + 0.994i)20-s + (−0.5 − 0.866i)23-s + (−0.978 − 0.207i)25-s + (−0.309 + 0.951i)26-s + (−0.669 − 0.743i)29-s + (−0.913 − 0.406i)31-s + (0.5 + 0.866i)32-s + ⋯ |
L(s) = 1 | + (0.104 + 0.994i)2-s + (−0.978 + 0.207i)4-s + (0.104 − 0.994i)5-s + (−0.309 − 0.951i)8-s + 10-s + (0.913 + 0.406i)13-s + (0.913 − 0.406i)16-s + (−0.809 − 0.587i)17-s + (0.309 + 0.951i)19-s + (0.104 + 0.994i)20-s + (−0.5 − 0.866i)23-s + (−0.978 − 0.207i)25-s + (−0.309 + 0.951i)26-s + (−0.669 − 0.743i)29-s + (−0.913 − 0.406i)31-s + (0.5 + 0.866i)32-s + ⋯ |
Λ(s)=(=(693s/2ΓR(s)L(s)(0.908−0.418i)Λ(1−s)
Λ(s)=(=(693s/2ΓR(s)L(s)(0.908−0.418i)Λ(1−s)
Degree: |
1 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
0.908−0.418i
|
Analytic conductor: |
3.21827 |
Root analytic conductor: |
3.21827 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 693, (0: ), 0.908−0.418i)
|
Particular Values
L(21) |
≈ |
1.083552429−0.2376428423i |
L(21) |
≈ |
1.083552429−0.2376428423i |
L(1) |
≈ |
0.9585804801+0.1737218602i |
L(1) |
≈ |
0.9585804801+0.1737218602i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 11 | 1 |
good | 2 | 1+(0.104+0.994i)T |
| 5 | 1+(0.104−0.994i)T |
| 13 | 1+(0.913+0.406i)T |
| 17 | 1+(−0.809−0.587i)T |
| 19 | 1+(0.309+0.951i)T |
| 23 | 1+(−0.5−0.866i)T |
| 29 | 1+(−0.669−0.743i)T |
| 31 | 1+(−0.913−0.406i)T |
| 37 | 1+(0.309−0.951i)T |
| 41 | 1+(0.669−0.743i)T |
| 43 | 1+(0.5−0.866i)T |
| 47 | 1+(0.978+0.207i)T |
| 53 | 1+(−0.809+0.587i)T |
| 59 | 1+(0.978−0.207i)T |
| 61 | 1+(0.913−0.406i)T |
| 67 | 1+(−0.5−0.866i)T |
| 71 | 1+(−0.809−0.587i)T |
| 73 | 1+(0.309−0.951i)T |
| 79 | 1+(0.104+0.994i)T |
| 83 | 1+(0.913−0.406i)T |
| 89 | 1−T |
| 97 | 1+(0.104+0.994i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.30192360656314714964626393715, −22.081251816160567762786174828168, −21.17681468112283434531677851548, −20.19978960306602639599539008698, −19.57835019738186590968780385640, −18.70982842796235026952274526640, −17.924398916699451413101905874923, −17.53699998423087402242880769216, −16.03953288380468567057206806503, −15.09749532674597129423739245387, −14.3562480331136180811586758998, −13.388764121347985408805976432392, −12.91953899644304667789001542839, −11.52617080250032270239656952948, −11.11669065281782120811284055585, −10.33472891113043640278928890951, −9.4154052368399954630586842850, −8.52828577479757609826011297558, −7.41941392616699336353303973195, −6.27317788400347256118140954869, −5.38806625654898223188527959151, −4.10740462775854631319543704372, −3.32170435478827004499299507403, −2.42349272336398165615854284414, −1.32120815240327127693277568415,
0.55995768445746074704506512848, 2.00995095028354716518550142042, 3.81011364167148527023382431165, 4.376282622000601889166344751, 5.53974604541123973854843350738, 6.10469359176281008486620535519, 7.29017585404362737544388596224, 8.14982181952350786782476427484, 8.99036856392971212945816089042, 9.53160881730138300718159149768, 10.83946342291921483649230072653, 12.069631577155477223747162968945, 12.818964707163825067410879272321, 13.65238392219101716110818884347, 14.27215089063326338212666234359, 15.433066770932970346846690319211, 16.16013311417892397689276305552, 16.6310770727199824209468649290, 17.58448356679189140366645228645, 18.33490515831698014569558260884, 19.155886040312792851223527993510, 20.45644708522810833198447919745, 20.88906260603639187848485878202, 22.04902727383879485279146031783, 22.71804317397440559609982213554