L(s) = 1 | + (0.104 + 0.994i)2-s + (−0.978 + 0.207i)4-s + (0.104 − 0.994i)5-s + (−0.309 − 0.951i)8-s + 10-s + (0.913 + 0.406i)13-s + (0.913 − 0.406i)16-s + (−0.809 − 0.587i)17-s + (0.309 + 0.951i)19-s + (0.104 + 0.994i)20-s + (−0.5 − 0.866i)23-s + (−0.978 − 0.207i)25-s + (−0.309 + 0.951i)26-s + (−0.669 − 0.743i)29-s + (−0.913 − 0.406i)31-s + (0.5 + 0.866i)32-s + ⋯ |
L(s) = 1 | + (0.104 + 0.994i)2-s + (−0.978 + 0.207i)4-s + (0.104 − 0.994i)5-s + (−0.309 − 0.951i)8-s + 10-s + (0.913 + 0.406i)13-s + (0.913 − 0.406i)16-s + (−0.809 − 0.587i)17-s + (0.309 + 0.951i)19-s + (0.104 + 0.994i)20-s + (−0.5 − 0.866i)23-s + (−0.978 − 0.207i)25-s + (−0.309 + 0.951i)26-s + (−0.669 − 0.743i)29-s + (−0.913 − 0.406i)31-s + (0.5 + 0.866i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.908 - 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.908 - 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.083552429 - 0.2376428423i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.083552429 - 0.2376428423i\) |
\(L(1)\) |
\(\approx\) |
\(0.9585804801 + 0.1737218602i\) |
\(L(1)\) |
\(\approx\) |
\(0.9585804801 + 0.1737218602i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.104 + 0.994i)T \) |
| 5 | \( 1 + (0.104 - 0.994i)T \) |
| 13 | \( 1 + (0.913 + 0.406i)T \) |
| 17 | \( 1 + (-0.809 - 0.587i)T \) |
| 19 | \( 1 + (0.309 + 0.951i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.669 - 0.743i)T \) |
| 31 | \( 1 + (-0.913 - 0.406i)T \) |
| 37 | \( 1 + (0.309 - 0.951i)T \) |
| 41 | \( 1 + (0.669 - 0.743i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.978 + 0.207i)T \) |
| 53 | \( 1 + (-0.809 + 0.587i)T \) |
| 59 | \( 1 + (0.978 - 0.207i)T \) |
| 61 | \( 1 + (0.913 - 0.406i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.809 - 0.587i)T \) |
| 73 | \( 1 + (0.309 - 0.951i)T \) |
| 79 | \( 1 + (0.104 + 0.994i)T \) |
| 83 | \( 1 + (0.913 - 0.406i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.104 + 0.994i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.30192360656314714964626393715, −22.081251816160567762786174828168, −21.17681468112283434531677851548, −20.19978960306602639599539008698, −19.57835019738186590968780385640, −18.70982842796235026952274526640, −17.924398916699451413101905874923, −17.53699998423087402242880769216, −16.03953288380468567057206806503, −15.09749532674597129423739245387, −14.3562480331136180811586758998, −13.388764121347985408805976432392, −12.91953899644304667789001542839, −11.52617080250032270239656952948, −11.11669065281782120811284055585, −10.33472891113043640278928890951, −9.4154052368399954630586842850, −8.52828577479757609826011297558, −7.41941392616699336353303973195, −6.27317788400347256118140954869, −5.38806625654898223188527959151, −4.10740462775854631319543704372, −3.32170435478827004499299507403, −2.42349272336398165615854284414, −1.32120815240327127693277568415,
0.55995768445746074704506512848, 2.00995095028354716518550142042, 3.81011364167148527023382431165, 4.376282622000601889166344751, 5.53974604541123973854843350738, 6.10469359176281008486620535519, 7.29017585404362737544388596224, 8.14982181952350786782476427484, 8.99036856392971212945816089042, 9.53160881730138300718159149768, 10.83946342291921483649230072653, 12.069631577155477223747162968945, 12.818964707163825067410879272321, 13.65238392219101716110818884347, 14.27215089063326338212666234359, 15.433066770932970346846690319211, 16.16013311417892397689276305552, 16.6310770727199824209468649290, 17.58448356679189140366645228645, 18.33490515831698014569558260884, 19.155886040312792851223527993510, 20.45644708522810833198447919745, 20.88906260603639187848485878202, 22.04902727383879485279146031783, 22.71804317397440559609982213554