L(s) = 1 | + (0.913 − 0.406i)2-s + (0.669 − 0.743i)4-s + (−0.809 + 0.587i)5-s + (0.309 − 0.951i)8-s + (−0.5 + 0.866i)10-s + (0.913 − 0.406i)13-s + (−0.104 − 0.994i)16-s + (−0.104 − 0.994i)17-s + (−0.978 + 0.207i)19-s + (−0.104 + 0.994i)20-s + 23-s + (0.309 − 0.951i)25-s + (0.669 − 0.743i)26-s + (0.669 − 0.743i)29-s + (−0.104 + 0.994i)31-s + (−0.5 − 0.866i)32-s + ⋯ |
L(s) = 1 | + (0.913 − 0.406i)2-s + (0.669 − 0.743i)4-s + (−0.809 + 0.587i)5-s + (0.309 − 0.951i)8-s + (−0.5 + 0.866i)10-s + (0.913 − 0.406i)13-s + (−0.104 − 0.994i)16-s + (−0.104 − 0.994i)17-s + (−0.978 + 0.207i)19-s + (−0.104 + 0.994i)20-s + 23-s + (0.309 − 0.951i)25-s + (0.669 − 0.743i)26-s + (0.669 − 0.743i)29-s + (−0.104 + 0.994i)31-s + (−0.5 − 0.866i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.346 - 0.938i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.346 - 0.938i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.798070396 - 1.253116154i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.798070396 - 1.253116154i\) |
\(L(1)\) |
\(\approx\) |
\(1.543092972 - 0.5279193140i\) |
\(L(1)\) |
\(\approx\) |
\(1.543092972 - 0.5279193140i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.913 - 0.406i)T \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 13 | \( 1 + (0.913 - 0.406i)T \) |
| 17 | \( 1 + (-0.104 - 0.994i)T \) |
| 19 | \( 1 + (-0.978 + 0.207i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (0.669 - 0.743i)T \) |
| 31 | \( 1 + (-0.104 + 0.994i)T \) |
| 37 | \( 1 + (0.669 - 0.743i)T \) |
| 41 | \( 1 + (0.669 + 0.743i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.669 + 0.743i)T \) |
| 53 | \( 1 + (0.913 - 0.406i)T \) |
| 59 | \( 1 + (0.669 - 0.743i)T \) |
| 61 | \( 1 + (-0.104 - 0.994i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.809 + 0.587i)T \) |
| 73 | \( 1 + (-0.978 - 0.207i)T \) |
| 79 | \( 1 + (0.913 - 0.406i)T \) |
| 83 | \( 1 + (0.913 + 0.406i)T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.104 + 0.994i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.12559089301092915541532927272, −22.064776636365187090232168771774, −21.225287507021481840261154578278, −20.63250207530066797332277269, −19.698459344569216554893614208684, −18.985113833103469036898740327536, −17.69151144214389718394695106884, −16.70489388427980322310774790201, −16.2994277976597373103474191845, −15.1540630524389482543493664080, −14.915106847941956127593198356711, −13.52278693745110886585846528594, −12.99879044353149365878895419316, −12.15992230994328202613706970107, −11.32068502934993740735485415229, −10.598891154491219078943894140273, −8.86509387199948450001872631387, −8.39304534066193390704413085534, −7.34993605492453884135116661166, −6.45287873952278115566327094077, −5.533821017190706615705549358991, −4.385805605372028820683681878582, −3.94627464987155958879101847368, −2.76373388936548926372758673642, −1.37103172288662011057920857659,
0.864080134093522788289704962515, 2.39062157668879141888766140463, 3.23418105629946379628748992163, 4.0858800387077225230930390819, 4.9929575850710368421710443228, 6.16380233119397515743286538417, 6.89760624085658567676492003580, 7.86678080486136277437633249317, 9.02357609419326959342145755514, 10.3189449403534269721011460060, 10.95135455024735313136126781367, 11.64133894563765129937530498380, 12.528229849358372255011644073135, 13.36262440899573179664737856753, 14.25526538199397217474653856109, 15.015266430640771421424404827424, 15.73407595989786376509816319216, 16.393947101317211577751244396254, 17.81370072070080822535193829318, 18.736037753585776819532106617017, 19.34550472234071180192083927530, 20.1851761784255327012491615181, 20.95558513150632196001341658815, 21.7272632713930911943914336104, 22.73674878011173790109328753169