Properties

Label 1-693-693.394-r0-0-0
Degree 11
Conductor 693693
Sign 0.3460.938i0.346 - 0.938i
Analytic cond. 3.218273.21827
Root an. cond. 3.218273.21827
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.913 − 0.406i)2-s + (0.669 − 0.743i)4-s + (−0.809 + 0.587i)5-s + (0.309 − 0.951i)8-s + (−0.5 + 0.866i)10-s + (0.913 − 0.406i)13-s + (−0.104 − 0.994i)16-s + (−0.104 − 0.994i)17-s + (−0.978 + 0.207i)19-s + (−0.104 + 0.994i)20-s + 23-s + (0.309 − 0.951i)25-s + (0.669 − 0.743i)26-s + (0.669 − 0.743i)29-s + (−0.104 + 0.994i)31-s + (−0.5 − 0.866i)32-s + ⋯
L(s)  = 1  + (0.913 − 0.406i)2-s + (0.669 − 0.743i)4-s + (−0.809 + 0.587i)5-s + (0.309 − 0.951i)8-s + (−0.5 + 0.866i)10-s + (0.913 − 0.406i)13-s + (−0.104 − 0.994i)16-s + (−0.104 − 0.994i)17-s + (−0.978 + 0.207i)19-s + (−0.104 + 0.994i)20-s + 23-s + (0.309 − 0.951i)25-s + (0.669 − 0.743i)26-s + (0.669 − 0.743i)29-s + (−0.104 + 0.994i)31-s + (−0.5 − 0.866i)32-s + ⋯

Functional equation

Λ(s)=(693s/2ΓR(s)L(s)=((0.3460.938i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.346 - 0.938i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(693s/2ΓR(s)L(s)=((0.3460.938i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.346 - 0.938i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 693693    =    327113^{2} \cdot 7 \cdot 11
Sign: 0.3460.938i0.346 - 0.938i
Analytic conductor: 3.218273.21827
Root analytic conductor: 3.218273.21827
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ693(394,)\chi_{693} (394, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 693, (0: ), 0.3460.938i)(1,\ 693,\ (0:\ ),\ 0.346 - 0.938i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.7980703961.253116154i1.798070396 - 1.253116154i
L(12)L(\frac12) \approx 1.7980703961.253116154i1.798070396 - 1.253116154i
L(1)L(1) \approx 1.5430929720.5279193140i1.543092972 - 0.5279193140i
L(1)L(1) \approx 1.5430929720.5279193140i1.543092972 - 0.5279193140i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
11 1 1
good2 1+(0.9130.406i)T 1 + (0.913 - 0.406i)T
5 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
13 1+(0.9130.406i)T 1 + (0.913 - 0.406i)T
17 1+(0.1040.994i)T 1 + (-0.104 - 0.994i)T
19 1+(0.978+0.207i)T 1 + (-0.978 + 0.207i)T
23 1+T 1 + T
29 1+(0.6690.743i)T 1 + (0.669 - 0.743i)T
31 1+(0.104+0.994i)T 1 + (-0.104 + 0.994i)T
37 1+(0.6690.743i)T 1 + (0.669 - 0.743i)T
41 1+(0.669+0.743i)T 1 + (0.669 + 0.743i)T
43 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
47 1+(0.669+0.743i)T 1 + (0.669 + 0.743i)T
53 1+(0.9130.406i)T 1 + (0.913 - 0.406i)T
59 1+(0.6690.743i)T 1 + (0.669 - 0.743i)T
61 1+(0.1040.994i)T 1 + (-0.104 - 0.994i)T
67 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
71 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
73 1+(0.9780.207i)T 1 + (-0.978 - 0.207i)T
79 1+(0.9130.406i)T 1 + (0.913 - 0.406i)T
83 1+(0.913+0.406i)T 1 + (0.913 + 0.406i)T
89 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
97 1+(0.104+0.994i)T 1 + (-0.104 + 0.994i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−23.12559089301092915541532927272, −22.064776636365187090232168771774, −21.225287507021481840261154578278, −20.63250207530066797332277269, −19.698459344569216554893614208684, −18.985113833103469036898740327536, −17.69151144214389718394695106884, −16.70489388427980322310774790201, −16.2994277976597373103474191845, −15.1540630524389482543493664080, −14.915106847941956127593198356711, −13.52278693745110886585846528594, −12.99879044353149365878895419316, −12.15992230994328202613706970107, −11.32068502934993740735485415229, −10.598891154491219078943894140273, −8.86509387199948450001872631387, −8.39304534066193390704413085534, −7.34993605492453884135116661166, −6.45287873952278115566327094077, −5.533821017190706615705549358991, −4.385805605372028820683681878582, −3.94627464987155958879101847368, −2.76373388936548926372758673642, −1.37103172288662011057920857659, 0.864080134093522788289704962515, 2.39062157668879141888766140463, 3.23418105629946379628748992163, 4.0858800387077225230930390819, 4.9929575850710368421710443228, 6.16380233119397515743286538417, 6.89760624085658567676492003580, 7.86678080486136277437633249317, 9.02357609419326959342145755514, 10.3189449403534269721011460060, 10.95135455024735313136126781367, 11.64133894563765129937530498380, 12.528229849358372255011644073135, 13.36262440899573179664737856753, 14.25526538199397217474653856109, 15.015266430640771421424404827424, 15.73407595989786376509816319216, 16.393947101317211577751244396254, 17.81370072070080822535193829318, 18.736037753585776819532106617017, 19.34550472234071180192083927530, 20.1851761784255327012491615181, 20.95558513150632196001341658815, 21.7272632713930911943914336104, 22.73674878011173790109328753169

Graph of the ZZ-function along the critical line