Properties

Label 1-73-73.72-r0-0-0
Degree $1$
Conductor $73$
Sign $1$
Analytic cond. $0.339010$
Root an. cond. $0.339010$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s − 7-s + 8-s + 9-s − 10-s − 11-s + 12-s − 13-s − 14-s − 15-s + 16-s − 17-s + 18-s + 19-s − 20-s − 21-s − 22-s + 23-s + 24-s + 25-s − 26-s + 27-s − 28-s + ⋯
L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s − 7-s + 8-s + 9-s − 10-s − 11-s + 12-s − 13-s − 14-s − 15-s + 16-s − 17-s + 18-s + 19-s − 20-s − 21-s − 22-s + 23-s + 24-s + 25-s − 26-s + 27-s − 28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 73 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 73 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(73\)
Sign: $1$
Analytic conductor: \(0.339010\)
Root analytic conductor: \(0.339010\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{73} (72, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 73,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.741907430\)
\(L(\frac12)\) \(\approx\) \(1.741907430\)
\(L(1)\) \(\approx\) \(1.794636483\)
\(L(1)\) \(\approx\) \(1.794636483\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad73 \( 1 \)
good2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 - T \)
19 \( 1 + T \)
23 \( 1 + T \)
29 \( 1 - T \)
31 \( 1 - T \)
37 \( 1 + T \)
41 \( 1 + T \)
43 \( 1 - T \)
47 \( 1 - T \)
53 \( 1 - T \)
59 \( 1 - T \)
61 \( 1 + T \)
67 \( 1 + T \)
71 \( 1 + T \)
79 \( 1 + T \)
83 \( 1 - T \)
89 \( 1 + T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−31.410952780342472027363132148771, −31.02736170697278072454381676429, −29.631583079970470978967117267366, −28.659981232933365653871089618185, −26.84786900747086139196535056632, −26.09180709583076451803961596351, −24.81571716970897524236893595400, −23.95287701989959187369445244593, −22.790404010198814653325005383796, −21.76766221918046631972443659677, −20.3432287181759549011681855680, −19.772275960075922407417433471963, −18.722161242359284092833550208002, −16.36169750261631524140625675010, −15.53955622545684648307412950081, −14.71339103427956601756490939006, −13.23662076809175706007294086306, −12.61039723044271894373865255190, −11.057600111831301161790763704769, −9.538462577126519392220210694474, −7.78599828751643495749040391811, −6.94757901318678836889055748081, −4.918936476482390378102427375243, −3.558510452056881428407611436422, −2.59808063262299142208016507350, 2.59808063262299142208016507350, 3.558510452056881428407611436422, 4.918936476482390378102427375243, 6.94757901318678836889055748081, 7.78599828751643495749040391811, 9.538462577126519392220210694474, 11.057600111831301161790763704769, 12.61039723044271894373865255190, 13.23662076809175706007294086306, 14.71339103427956601756490939006, 15.53955622545684648307412950081, 16.36169750261631524140625675010, 18.722161242359284092833550208002, 19.772275960075922407417433471963, 20.3432287181759549011681855680, 21.76766221918046631972443659677, 22.790404010198814653325005383796, 23.95287701989959187369445244593, 24.81571716970897524236893595400, 26.09180709583076451803961596351, 26.84786900747086139196535056632, 28.659981232933365653871089618185, 29.631583079970470978967117267366, 31.02736170697278072454381676429, 31.410952780342472027363132148771

Graph of the $Z$-function along the critical line