Properties

Label 1-76-76.31-r0-0-0
Degree 11
Conductor 7676
Sign 0.813+0.582i-0.813 + 0.582i
Analytic cond. 0.3529420.352942
Root an. cond. 0.3529420.352942
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)3-s + (−0.5 + 0.866i)5-s − 7-s + (−0.5 − 0.866i)9-s − 11-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)17-s + (0.5 − 0.866i)21-s + (0.5 + 0.866i)23-s + (−0.5 − 0.866i)25-s + 27-s + (0.5 + 0.866i)29-s + 31-s + (0.5 − 0.866i)33-s + ⋯
L(s)  = 1  + (−0.5 + 0.866i)3-s + (−0.5 + 0.866i)5-s − 7-s + (−0.5 − 0.866i)9-s − 11-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)17-s + (0.5 − 0.866i)21-s + (0.5 + 0.866i)23-s + (−0.5 − 0.866i)25-s + 27-s + (0.5 + 0.866i)29-s + 31-s + (0.5 − 0.866i)33-s + ⋯

Functional equation

Λ(s)=(76s/2ΓR(s)L(s)=((0.813+0.582i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.813 + 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(76s/2ΓR(s)L(s)=((0.813+0.582i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.813 + 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 7676    =    22192^{2} \cdot 19
Sign: 0.813+0.582i-0.813 + 0.582i
Analytic conductor: 0.3529420.352942
Root analytic conductor: 0.3529420.352942
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ76(31,)\chi_{76} (31, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 76, (0: ), 0.813+0.582i)(1,\ 76,\ (0:\ ),\ -0.813 + 0.582i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.1513100478+0.4711510755i0.1513100478 + 0.4711510755i
L(12)L(\frac12) \approx 0.1513100478+0.4711510755i0.1513100478 + 0.4711510755i
L(1)L(1) \approx 0.5444585745+0.3554927930i0.5444585745 + 0.3554927930i
L(1)L(1) \approx 0.5444585745+0.3554927930i0.5444585745 + 0.3554927930i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
19 1 1
good3 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
5 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
7 1T 1 - T
11 1T 1 - T
13 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
17 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
23 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
29 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
31 1+T 1 + T
37 1T 1 - T
41 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
43 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
47 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
53 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
59 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
61 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
67 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
71 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
73 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
79 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
83 1T 1 - T
89 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
97 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−30.96453725105437204053826179350, −29.65968366310593268952569635033, −28.731284905853535931558904026039, −28.09368364796693274089527945158, −26.593525980923935541086053795573, −25.212662284167302064462573807574, −24.44243922779136480881675444591, −23.16953424639576405869516568038, −22.7064726909371224521727937056, −20.87123947515133948945018891343, −19.78498907847391683258141524432, −18.788972818306042386113536472942, −17.65724732039485731661817504769, −16.37203995166865835259410108279, −15.61374586037738500121590160878, −13.438080816455064444966024837614, −12.87438834997580717123564238752, −11.783820688072526194670827910777, −10.3684854346823042521354082626, −8.66032633146557685740066672257, −7.533294131612715784735581358914, −6.14007255244981134512812111322, −4.84961988064021471629710131160, −2.80722110358583131167560499354, −0.58643777676603813148578083397, 3.00082467881282824216785862619, 4.15290600150176723047257843734, 5.87757034690246130943089346732, 7.019664629035192349384364112658, 8.8581221353773641045339907238, 10.24687219894998237649489227321, 10.99746765501690092284644137077, 12.33300278153568286834102221757, 13.89513595701432375219917248887, 15.4487651538860355056711621140, 15.85937534171682304035638596682, 17.254153142848586422501757409837, 18.599214968113827970794717877471, 19.606763176519492967335996780085, 21.09570815109919306970357185341, 22.03149539372091202591994665187, 23.02462314323435186793988287226, 23.74014861695812710581901882900, 25.956065664355465041186329675565, 26.20576025758494651494936786084, 27.42585564007553546541564237415, 28.6154775272682322051572108980, 29.33340741935054888222392611183, 30.88907762195413766939418563356, 31.7612094107870519046522065940

Graph of the ZZ-function along the critical line