L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.5 + 0.866i)5-s − 7-s + (−0.5 − 0.866i)9-s − 11-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)17-s + (0.5 − 0.866i)21-s + (0.5 + 0.866i)23-s + (−0.5 − 0.866i)25-s + 27-s + (0.5 + 0.866i)29-s + 31-s + (0.5 − 0.866i)33-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.5 + 0.866i)5-s − 7-s + (−0.5 − 0.866i)9-s − 11-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)17-s + (0.5 − 0.866i)21-s + (0.5 + 0.866i)23-s + (−0.5 − 0.866i)25-s + 27-s + (0.5 + 0.866i)29-s + 31-s + (0.5 − 0.866i)33-s + ⋯ |
Λ(s)=(=(76s/2ΓR(s)L(s)(−0.813+0.582i)Λ(1−s)
Λ(s)=(=(76s/2ΓR(s)L(s)(−0.813+0.582i)Λ(1−s)
Degree: |
1 |
Conductor: |
76
= 22⋅19
|
Sign: |
−0.813+0.582i
|
Analytic conductor: |
0.352942 |
Root analytic conductor: |
0.352942 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ76(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 76, (0: ), −0.813+0.582i)
|
Particular Values
L(21) |
≈ |
0.1513100478+0.4711510755i |
L(21) |
≈ |
0.1513100478+0.4711510755i |
L(1) |
≈ |
0.5444585745+0.3554927930i |
L(1) |
≈ |
0.5444585745+0.3554927930i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1 |
good | 3 | 1+(−0.5+0.866i)T |
| 5 | 1+(−0.5+0.866i)T |
| 7 | 1−T |
| 11 | 1−T |
| 13 | 1+(0.5+0.866i)T |
| 17 | 1+(−0.5+0.866i)T |
| 23 | 1+(0.5+0.866i)T |
| 29 | 1+(0.5+0.866i)T |
| 31 | 1+T |
| 37 | 1−T |
| 41 | 1+(0.5−0.866i)T |
| 43 | 1+(0.5−0.866i)T |
| 47 | 1+(0.5+0.866i)T |
| 53 | 1+(0.5+0.866i)T |
| 59 | 1+(−0.5+0.866i)T |
| 61 | 1+(−0.5−0.866i)T |
| 67 | 1+(−0.5−0.866i)T |
| 71 | 1+(−0.5+0.866i)T |
| 73 | 1+(−0.5+0.866i)T |
| 79 | 1+(−0.5+0.866i)T |
| 83 | 1−T |
| 89 | 1+(0.5+0.866i)T |
| 97 | 1+(0.5−0.866i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−30.96453725105437204053826179350, −29.65968366310593268952569635033, −28.731284905853535931558904026039, −28.09368364796693274089527945158, −26.593525980923935541086053795573, −25.212662284167302064462573807574, −24.44243922779136480881675444591, −23.16953424639576405869516568038, −22.7064726909371224521727937056, −20.87123947515133948945018891343, −19.78498907847391683258141524432, −18.788972818306042386113536472942, −17.65724732039485731661817504769, −16.37203995166865835259410108279, −15.61374586037738500121590160878, −13.438080816455064444966024837614, −12.87438834997580717123564238752, −11.783820688072526194670827910777, −10.3684854346823042521354082626, −8.66032633146557685740066672257, −7.533294131612715784735581358914, −6.14007255244981134512812111322, −4.84961988064021471629710131160, −2.80722110358583131167560499354, −0.58643777676603813148578083397,
3.00082467881282824216785862619, 4.15290600150176723047257843734, 5.87757034690246130943089346732, 7.019664629035192349384364112658, 8.8581221353773641045339907238, 10.24687219894998237649489227321, 10.99746765501690092284644137077, 12.33300278153568286834102221757, 13.89513595701432375219917248887, 15.4487651538860355056711621140, 15.85937534171682304035638596682, 17.254153142848586422501757409837, 18.599214968113827970794717877471, 19.606763176519492967335996780085, 21.09570815109919306970357185341, 22.03149539372091202591994665187, 23.02462314323435186793988287226, 23.74014861695812710581901882900, 25.956065664355465041186329675565, 26.20576025758494651494936786084, 27.42585564007553546541564237415, 28.6154775272682322051572108980, 29.33340741935054888222392611183, 30.88907762195413766939418563356, 31.7612094107870519046522065940