L(s) = 1 | + (−0.766 + 0.642i)3-s + (−0.939 − 0.342i)5-s + (0.5 − 0.866i)7-s + (0.173 − 0.984i)9-s + (0.5 + 0.866i)11-s + (0.766 + 0.642i)13-s + (0.939 − 0.342i)15-s + (0.173 + 0.984i)17-s + (0.173 + 0.984i)21-s + (0.939 − 0.342i)23-s + (0.766 + 0.642i)25-s + (0.5 + 0.866i)27-s + (0.173 − 0.984i)29-s + (0.5 − 0.866i)31-s + (−0.939 − 0.342i)33-s + ⋯ |
L(s) = 1 | + (−0.766 + 0.642i)3-s + (−0.939 − 0.342i)5-s + (0.5 − 0.866i)7-s + (0.173 − 0.984i)9-s + (0.5 + 0.866i)11-s + (0.766 + 0.642i)13-s + (0.939 − 0.342i)15-s + (0.173 + 0.984i)17-s + (0.173 + 0.984i)21-s + (0.939 − 0.342i)23-s + (0.766 + 0.642i)25-s + (0.5 + 0.866i)27-s + (0.173 − 0.984i)29-s + (0.5 − 0.866i)31-s + (−0.939 − 0.342i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.934 + 0.356i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.934 + 0.356i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.148157157 + 0.2114326841i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.148157157 + 0.2114326841i\) |
\(L(1)\) |
\(\approx\) |
\(0.8676148607 + 0.09876783075i\) |
\(L(1)\) |
\(\approx\) |
\(0.8676148607 + 0.09876783075i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.766 + 0.642i)T \) |
| 5 | \( 1 + (-0.939 - 0.342i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.766 + 0.642i)T \) |
| 17 | \( 1 + (0.173 + 0.984i)T \) |
| 23 | \( 1 + (0.939 - 0.342i)T \) |
| 29 | \( 1 + (0.173 - 0.984i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (0.766 - 0.642i)T \) |
| 43 | \( 1 + (0.939 + 0.342i)T \) |
| 47 | \( 1 + (-0.173 + 0.984i)T \) |
| 53 | \( 1 + (-0.939 + 0.342i)T \) |
| 59 | \( 1 + (-0.173 - 0.984i)T \) |
| 61 | \( 1 + (-0.939 + 0.342i)T \) |
| 67 | \( 1 + (-0.173 + 0.984i)T \) |
| 71 | \( 1 + (0.939 + 0.342i)T \) |
| 73 | \( 1 + (0.766 - 0.642i)T \) |
| 79 | \( 1 + (-0.766 + 0.642i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + (0.766 + 0.642i)T \) |
| 97 | \( 1 + (0.173 + 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−30.84096285299500936196508163316, −30.04066833236684085432472264954, −28.87251269441061825606024124974, −27.66892946024838474915347156961, −27.167698467132921824395217681316, −25.302328357425522166650528943672, −24.442609528907593227545999370532, −23.35494972075371236401471432577, −22.53070479712262387213849618618, −21.37886098097510563727661994936, −19.735150566869649122795302251, −18.676067695795702969205874820229, −18.00386863522102067357605082740, −16.48312804299469141872363742489, −15.50870441980884039778224570457, −14.0952197505415757648601532766, −12.61491864920623724039135807847, −11.551822875062796260420107085654, −10.92163356345042863745789642039, −8.73737990887081527816779126448, −7.60701607963533984727180810232, −6.26459546746393040983536759633, −4.98973681323677219047174459796, −3.05368430117884304326361197924, −0.939438472503433382520684821743,
1.01246517932589726062569630817, 3.96684770177517138241835959944, 4.5515419878775381291061844324, 6.384310696984467435155758517794, 7.7799814129823128520259854436, 9.308543883691556608727010600657, 10.75738862509840503331399201720, 11.56787792574267677478893483013, 12.7727413000849082368981001, 14.55852683448197249779297403463, 15.59071313475156347994425673886, 16.747191215700704870723607526383, 17.47330386225900830376748478146, 19.07760865713355978964521072640, 20.39028686174776523166758120900, 21.15108321058282310200389396560, 22.7265847324990504714160466115, 23.36007206378984271210225504865, 24.2809133098292607279212407255, 26.0739892010995034155241545905, 27.037518674585718210271648808525, 27.90562624615299958718850772673, 28.65651303857500874783077260545, 30.182066149791190715714281211411, 31.02544744042214713503034126765