L(s) = 1 | + (0.642 + 0.766i)3-s + (0.866 + 0.5i)7-s + (−0.173 + 0.984i)9-s + (−0.5 − 0.866i)11-s + (0.642 − 0.766i)13-s + (−0.984 + 0.173i)17-s + (0.173 + 0.984i)21-s + (−0.342 − 0.939i)23-s + (−0.866 + 0.5i)27-s + (−0.173 + 0.984i)29-s + (−0.5 + 0.866i)31-s + (0.342 − 0.939i)33-s − i·37-s + 39-s + (−0.766 + 0.642i)41-s + ⋯ |
L(s) = 1 | + (0.642 + 0.766i)3-s + (0.866 + 0.5i)7-s + (−0.173 + 0.984i)9-s + (−0.5 − 0.866i)11-s + (0.642 − 0.766i)13-s + (−0.984 + 0.173i)17-s + (0.173 + 0.984i)21-s + (−0.342 − 0.939i)23-s + (−0.866 + 0.5i)27-s + (−0.173 + 0.984i)29-s + (−0.5 + 0.866i)31-s + (0.342 − 0.939i)33-s − i·37-s + 39-s + (−0.766 + 0.642i)41-s + ⋯ |
Λ(s)=(=(760s/2ΓR(s+1)L(s)(−0.949+0.313i)Λ(1−s)
Λ(s)=(=(760s/2ΓR(s+1)L(s)(−0.949+0.313i)Λ(1−s)
Degree: |
1 |
Conductor: |
760
= 23⋅5⋅19
|
Sign: |
−0.949+0.313i
|
Analytic conductor: |
81.6733 |
Root analytic conductor: |
81.6733 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ760(307,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 760, (1: ), −0.949+0.313i)
|
Particular Values
L(21) |
≈ |
0.2445691508+1.523055175i |
L(21) |
≈ |
0.2445691508+1.523055175i |
L(1) |
≈ |
1.117162518+0.4681846828i |
L(1) |
≈ |
1.117162518+0.4681846828i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(0.642+0.766i)T |
| 7 | 1+(0.866+0.5i)T |
| 11 | 1+(−0.5−0.866i)T |
| 13 | 1+(0.642−0.766i)T |
| 17 | 1+(−0.984+0.173i)T |
| 23 | 1+(−0.342−0.939i)T |
| 29 | 1+(−0.173+0.984i)T |
| 31 | 1+(−0.5+0.866i)T |
| 37 | 1−iT |
| 41 | 1+(−0.766+0.642i)T |
| 43 | 1+(−0.342+0.939i)T |
| 47 | 1+(−0.984−0.173i)T |
| 53 | 1+(0.342+0.939i)T |
| 59 | 1+(0.173+0.984i)T |
| 61 | 1+(0.939−0.342i)T |
| 67 | 1+(−0.984−0.173i)T |
| 71 | 1+(−0.939−0.342i)T |
| 73 | 1+(−0.642−0.766i)T |
| 79 | 1+(−0.766+0.642i)T |
| 83 | 1+(0.866+0.5i)T |
| 89 | 1+(0.766+0.642i)T |
| 97 | 1+(0.984−0.173i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.69266341988380691503666934879, −20.68793004306569139928959915533, −20.426887345037161084323388725302, −19.42773311896267974817879811033, −18.61682081645836169422020922775, −17.772058672925977482252442394819, −17.38261067286890057587211717889, −16.037252705274256907346233956223, −15.144694516959840957147945136543, −14.433482663510439513663988987340, −13.50164158411262808441933694348, −13.1280811625554774575600869069, −11.83919169157858481618853519852, −11.31060586310392147955526929589, −10.10338639559708241795827957474, −9.13470281993617862367714313893, −8.30181627459854928488665546848, −7.45361038308710701043360739839, −6.86678259838434411752877023050, −5.68230783535816550614737943952, −4.445302960117796337543262613577, −3.667491192821603342549067419406, −2.15035365565159932632578277056, −1.73634765794197865684927423049, −0.28731868279981875197038002775,
1.44627506461586720620060046611, 2.63337753331083960124332126652, 3.40144643434368221358088772088, 4.59369829341156472475378758247, 5.27581952805658752662599998727, 6.311484553821096590817471022454, 7.75954330983725400750467875540, 8.53245749390288167587251815568, 8.87078950629118737230482413466, 10.2800047890931447800018181107, 10.81736300231293967841590340476, 11.61115664514469167863522476003, 12.935632189778778656095883587920, 13.632802950043949988506274558153, 14.58151464418643215087104567480, 15.17328123648315863555731023226, 15.99242590294608672201899721664, 16.653938415119455683010291677471, 17.95078258899841187464979278589, 18.40983614097568743438117461433, 19.52254497789255605322028571207, 20.3355086876113374184936667860, 20.90751284391703665355269067046, 21.77486436061778322381074862112, 22.20278145678105860868488450173