Properties

Label 1-760-760.307-r1-0-0
Degree 11
Conductor 760760
Sign 0.949+0.313i-0.949 + 0.313i
Analytic cond. 81.673381.6733
Root an. cond. 81.673381.6733
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.642 + 0.766i)3-s + (0.866 + 0.5i)7-s + (−0.173 + 0.984i)9-s + (−0.5 − 0.866i)11-s + (0.642 − 0.766i)13-s + (−0.984 + 0.173i)17-s + (0.173 + 0.984i)21-s + (−0.342 − 0.939i)23-s + (−0.866 + 0.5i)27-s + (−0.173 + 0.984i)29-s + (−0.5 + 0.866i)31-s + (0.342 − 0.939i)33-s i·37-s + 39-s + (−0.766 + 0.642i)41-s + ⋯
L(s)  = 1  + (0.642 + 0.766i)3-s + (0.866 + 0.5i)7-s + (−0.173 + 0.984i)9-s + (−0.5 − 0.866i)11-s + (0.642 − 0.766i)13-s + (−0.984 + 0.173i)17-s + (0.173 + 0.984i)21-s + (−0.342 − 0.939i)23-s + (−0.866 + 0.5i)27-s + (−0.173 + 0.984i)29-s + (−0.5 + 0.866i)31-s + (0.342 − 0.939i)33-s i·37-s + 39-s + (−0.766 + 0.642i)41-s + ⋯

Functional equation

Λ(s)=(760s/2ΓR(s+1)L(s)=((0.949+0.313i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.949 + 0.313i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(760s/2ΓR(s+1)L(s)=((0.949+0.313i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.949 + 0.313i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 760760    =    235192^{3} \cdot 5 \cdot 19
Sign: 0.949+0.313i-0.949 + 0.313i
Analytic conductor: 81.673381.6733
Root analytic conductor: 81.673381.6733
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ760(307,)\chi_{760} (307, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 760, (1: ), 0.949+0.313i)(1,\ 760,\ (1:\ ),\ -0.949 + 0.313i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.2445691508+1.523055175i0.2445691508 + 1.523055175i
L(12)L(\frac12) \approx 0.2445691508+1.523055175i0.2445691508 + 1.523055175i
L(1)L(1) \approx 1.117162518+0.4681846828i1.117162518 + 0.4681846828i
L(1)L(1) \approx 1.117162518+0.4681846828i1.117162518 + 0.4681846828i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.642+0.766i)T 1 + (0.642 + 0.766i)T
7 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
11 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
13 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
17 1+(0.984+0.173i)T 1 + (-0.984 + 0.173i)T
23 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
29 1+(0.173+0.984i)T 1 + (-0.173 + 0.984i)T
31 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
37 1iT 1 - iT
41 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
43 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
47 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
53 1+(0.342+0.939i)T 1 + (0.342 + 0.939i)T
59 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
61 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
67 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
71 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
73 1+(0.6420.766i)T 1 + (-0.642 - 0.766i)T
79 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
83 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
89 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
97 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.69266341988380691503666934879, −20.68793004306569139928959915533, −20.426887345037161084323388725302, −19.42773311896267974817879811033, −18.61682081645836169422020922775, −17.772058672925977482252442394819, −17.38261067286890057587211717889, −16.037252705274256907346233956223, −15.144694516959840957147945136543, −14.433482663510439513663988987340, −13.50164158411262808441933694348, −13.1280811625554774575600869069, −11.83919169157858481618853519852, −11.31060586310392147955526929589, −10.10338639559708241795827957474, −9.13470281993617862367714313893, −8.30181627459854928488665546848, −7.45361038308710701043360739839, −6.86678259838434411752877023050, −5.68230783535816550614737943952, −4.445302960117796337543262613577, −3.667491192821603342549067419406, −2.15035365565159932632578277056, −1.73634765794197865684927423049, −0.28731868279981875197038002775, 1.44627506461586720620060046611, 2.63337753331083960124332126652, 3.40144643434368221358088772088, 4.59369829341156472475378758247, 5.27581952805658752662599998727, 6.311484553821096590817471022454, 7.75954330983725400750467875540, 8.53245749390288167587251815568, 8.87078950629118737230482413466, 10.2800047890931447800018181107, 10.81736300231293967841590340476, 11.61115664514469167863522476003, 12.935632189778778656095883587920, 13.632802950043949988506274558153, 14.58151464418643215087104567480, 15.17328123648315863555731023226, 15.99242590294608672201899721664, 16.653938415119455683010291677471, 17.95078258899841187464979278589, 18.40983614097568743438117461433, 19.52254497789255605322028571207, 20.3355086876113374184936667860, 20.90751284391703665355269067046, 21.77486436061778322381074862112, 22.20278145678105860868488450173

Graph of the ZZ-function along the critical line