L(s) = 1 | + (−0.342 + 0.939i)3-s + (0.866 + 0.5i)7-s + (−0.766 − 0.642i)9-s + (−0.5 − 0.866i)11-s + (−0.342 − 0.939i)13-s + (0.642 + 0.766i)17-s + (−0.766 + 0.642i)21-s + (0.984 + 0.173i)23-s + (0.866 − 0.5i)27-s + (0.766 + 0.642i)29-s + (0.5 − 0.866i)31-s + (0.984 − 0.173i)33-s − i·37-s + 39-s + (−0.939 − 0.342i)41-s + ⋯ |
L(s) = 1 | + (−0.342 + 0.939i)3-s + (0.866 + 0.5i)7-s + (−0.766 − 0.642i)9-s + (−0.5 − 0.866i)11-s + (−0.342 − 0.939i)13-s + (0.642 + 0.766i)17-s + (−0.766 + 0.642i)21-s + (0.984 + 0.173i)23-s + (0.866 − 0.5i)27-s + (0.766 + 0.642i)29-s + (0.5 − 0.866i)31-s + (0.984 − 0.173i)33-s − i·37-s + 39-s + (−0.939 − 0.342i)41-s + ⋯ |
Λ(s)=(=(760s/2ΓR(s)L(s)(0.829+0.558i)Λ(1−s)
Λ(s)=(=(760s/2ΓR(s)L(s)(0.829+0.558i)Λ(1−s)
Degree: |
1 |
Conductor: |
760
= 23⋅5⋅19
|
Sign: |
0.829+0.558i
|
Analytic conductor: |
3.52942 |
Root analytic conductor: |
3.52942 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ760(347,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 760, (0: ), 0.829+0.558i)
|
Particular Values
L(21) |
≈ |
1.289905603+0.3937540678i |
L(21) |
≈ |
1.289905603+0.3937540678i |
L(1) |
≈ |
1.015605782+0.2421904685i |
L(1) |
≈ |
1.015605782+0.2421904685i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(−0.342+0.939i)T |
| 7 | 1+(0.866+0.5i)T |
| 11 | 1+(−0.5−0.866i)T |
| 13 | 1+(−0.342−0.939i)T |
| 17 | 1+(0.642+0.766i)T |
| 23 | 1+(0.984+0.173i)T |
| 29 | 1+(0.766+0.642i)T |
| 31 | 1+(0.5−0.866i)T |
| 37 | 1−iT |
| 41 | 1+(−0.939−0.342i)T |
| 43 | 1+(0.984−0.173i)T |
| 47 | 1+(0.642−0.766i)T |
| 53 | 1+(0.984+0.173i)T |
| 59 | 1+(−0.766+0.642i)T |
| 61 | 1+(−0.173+0.984i)T |
| 67 | 1+(−0.642+0.766i)T |
| 71 | 1+(−0.173−0.984i)T |
| 73 | 1+(−0.342+0.939i)T |
| 79 | 1+(−0.939−0.342i)T |
| 83 | 1+(0.866+0.5i)T |
| 89 | 1+(0.939−0.342i)T |
| 97 | 1+(0.642+0.766i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.61281536549681763738976902738, −21.414808700004334433566880424509, −20.71279158267286107436816696955, −19.89127279964072642479893152771, −18.93193887570079774327087689897, −18.34349692368711108219787201494, −17.407174404451786502572875661639, −17.015109925643057246218001510899, −15.93411651697994262899023602739, −14.77722570824573750482849544296, −14.0455229880646553937283620307, −13.384867003531812316670169875456, −12.28535663721184707920386472793, −11.777357739618659211881333264165, −10.866182831884854646716044899985, −9.95869075138189034834049302916, −8.77080803509479286440510223673, −7.765896928147569036523097131525, −7.21752563671038936762361015403, −6.38690054618726679484511374367, −5.03388891170133040179722556078, −4.6223280633438256503889696831, −2.93305422299856142453508808212, −1.93292735798419926767731461961, −0.980132611952826404081949597706,
0.89487778318119672429697151283, 2.54565629074807208943664957027, 3.42341083852151022107866788759, 4.54832931505553352650666774171, 5.48623397781278747788239745676, 5.86271199278118082833538802555, 7.44090556819381895886243798027, 8.4190604251367658690868165494, 9.00539012318955579883051972427, 10.32449315735358664430252672327, 10.68678357550628898462635721458, 11.65903524031717465712611985882, 12.4169403738931580213513955215, 13.55890663835802837178848210585, 14.625476793104250217412925716191, 15.14468940885231639827558481171, 15.90573029643196541562551049249, 16.86740182995173161834362918391, 17.490160111504376982653760876942, 18.34227746563693558722312845461, 19.2764276042414133047125208403, 20.294683932661648596914773177363, 21.15413427965674949367279479851, 21.49692295597800004852338595402, 22.35653721674064865439944221136