Properties

Label 1-760-760.347-r0-0-0
Degree 11
Conductor 760760
Sign 0.829+0.558i0.829 + 0.558i
Analytic cond. 3.529423.52942
Root an. cond. 3.529423.52942
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.342 + 0.939i)3-s + (0.866 + 0.5i)7-s + (−0.766 − 0.642i)9-s + (−0.5 − 0.866i)11-s + (−0.342 − 0.939i)13-s + (0.642 + 0.766i)17-s + (−0.766 + 0.642i)21-s + (0.984 + 0.173i)23-s + (0.866 − 0.5i)27-s + (0.766 + 0.642i)29-s + (0.5 − 0.866i)31-s + (0.984 − 0.173i)33-s i·37-s + 39-s + (−0.939 − 0.342i)41-s + ⋯
L(s)  = 1  + (−0.342 + 0.939i)3-s + (0.866 + 0.5i)7-s + (−0.766 − 0.642i)9-s + (−0.5 − 0.866i)11-s + (−0.342 − 0.939i)13-s + (0.642 + 0.766i)17-s + (−0.766 + 0.642i)21-s + (0.984 + 0.173i)23-s + (0.866 − 0.5i)27-s + (0.766 + 0.642i)29-s + (0.5 − 0.866i)31-s + (0.984 − 0.173i)33-s i·37-s + 39-s + (−0.939 − 0.342i)41-s + ⋯

Functional equation

Λ(s)=(760s/2ΓR(s)L(s)=((0.829+0.558i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.829 + 0.558i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(760s/2ΓR(s)L(s)=((0.829+0.558i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.829 + 0.558i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 760760    =    235192^{3} \cdot 5 \cdot 19
Sign: 0.829+0.558i0.829 + 0.558i
Analytic conductor: 3.529423.52942
Root analytic conductor: 3.529423.52942
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ760(347,)\chi_{760} (347, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 760, (0: ), 0.829+0.558i)(1,\ 760,\ (0:\ ),\ 0.829 + 0.558i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.289905603+0.3937540678i1.289905603 + 0.3937540678i
L(12)L(\frac12) \approx 1.289905603+0.3937540678i1.289905603 + 0.3937540678i
L(1)L(1) \approx 1.015605782+0.2421904685i1.015605782 + 0.2421904685i
L(1)L(1) \approx 1.015605782+0.2421904685i1.015605782 + 0.2421904685i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
7 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
11 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
13 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
17 1+(0.642+0.766i)T 1 + (0.642 + 0.766i)T
23 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
29 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
31 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
37 1iT 1 - iT
41 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
43 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
47 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
53 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
59 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
61 1+(0.173+0.984i)T 1 + (-0.173 + 0.984i)T
67 1+(0.642+0.766i)T 1 + (-0.642 + 0.766i)T
71 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
73 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
79 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
83 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
89 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
97 1+(0.642+0.766i)T 1 + (0.642 + 0.766i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.61281536549681763738976902738, −21.414808700004334433566880424509, −20.71279158267286107436816696955, −19.89127279964072642479893152771, −18.93193887570079774327087689897, −18.34349692368711108219787201494, −17.407174404451786502572875661639, −17.015109925643057246218001510899, −15.93411651697994262899023602739, −14.77722570824573750482849544296, −14.0455229880646553937283620307, −13.384867003531812316670169875456, −12.28535663721184707920386472793, −11.777357739618659211881333264165, −10.866182831884854646716044899985, −9.95869075138189034834049302916, −8.77080803509479286440510223673, −7.765896928147569036523097131525, −7.21752563671038936762361015403, −6.38690054618726679484511374367, −5.03388891170133040179722556078, −4.6223280633438256503889696831, −2.93305422299856142453508808212, −1.93292735798419926767731461961, −0.980132611952826404081949597706, 0.89487778318119672429697151283, 2.54565629074807208943664957027, 3.42341083852151022107866788759, 4.54832931505553352650666774171, 5.48623397781278747788239745676, 5.86271199278118082833538802555, 7.44090556819381895886243798027, 8.4190604251367658690868165494, 9.00539012318955579883051972427, 10.32449315735358664430252672327, 10.68678357550628898462635721458, 11.65903524031717465712611985882, 12.4169403738931580213513955215, 13.55890663835802837178848210585, 14.625476793104250217412925716191, 15.14468940885231639827558481171, 15.90573029643196541562551049249, 16.86740182995173161834362918391, 17.490160111504376982653760876942, 18.34227746563693558722312845461, 19.2764276042414133047125208403, 20.294683932661648596914773177363, 21.15413427965674949367279479851, 21.49692295597800004852338595402, 22.35653721674064865439944221136

Graph of the ZZ-function along the critical line