Properties

Label 1-760-760.443-r0-0-0
Degree $1$
Conductor $760$
Sign $-0.460 + 0.887i$
Analytic cond. $3.52942$
Root an. cond. $3.52942$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.642 + 0.766i)3-s + (0.866 − 0.5i)7-s + (−0.173 − 0.984i)9-s + (−0.5 + 0.866i)11-s + (−0.642 − 0.766i)13-s + (−0.984 − 0.173i)17-s + (−0.173 + 0.984i)21-s + (−0.342 + 0.939i)23-s + (0.866 + 0.5i)27-s + (0.173 + 0.984i)29-s + (0.5 + 0.866i)31-s + (−0.342 − 0.939i)33-s i·37-s + 39-s + (0.766 + 0.642i)41-s + ⋯
L(s)  = 1  + (−0.642 + 0.766i)3-s + (0.866 − 0.5i)7-s + (−0.173 − 0.984i)9-s + (−0.5 + 0.866i)11-s + (−0.642 − 0.766i)13-s + (−0.984 − 0.173i)17-s + (−0.173 + 0.984i)21-s + (−0.342 + 0.939i)23-s + (0.866 + 0.5i)27-s + (0.173 + 0.984i)29-s + (0.5 + 0.866i)31-s + (−0.342 − 0.939i)33-s i·37-s + 39-s + (0.766 + 0.642i)41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.460 + 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.460 + 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(760\)    =    \(2^{3} \cdot 5 \cdot 19\)
Sign: $-0.460 + 0.887i$
Analytic conductor: \(3.52942\)
Root analytic conductor: \(3.52942\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{760} (443, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 760,\ (0:\ ),\ -0.460 + 0.887i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4134321972 + 0.6801680654i\)
\(L(\frac12)\) \(\approx\) \(0.4134321972 + 0.6801680654i\)
\(L(1)\) \(\approx\) \(0.7576383149 + 0.2568738252i\)
\(L(1)\) \(\approx\) \(0.7576383149 + 0.2568738252i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 \)
good3 \( 1 + (-0.642 + 0.766i)T \)
7 \( 1 + (0.866 - 0.5i)T \)
11 \( 1 + (-0.5 + 0.866i)T \)
13 \( 1 + (-0.642 - 0.766i)T \)
17 \( 1 + (-0.984 - 0.173i)T \)
23 \( 1 + (-0.342 + 0.939i)T \)
29 \( 1 + (0.173 + 0.984i)T \)
31 \( 1 + (0.5 + 0.866i)T \)
37 \( 1 - iT \)
41 \( 1 + (0.766 + 0.642i)T \)
43 \( 1 + (-0.342 - 0.939i)T \)
47 \( 1 + (-0.984 + 0.173i)T \)
53 \( 1 + (-0.342 + 0.939i)T \)
59 \( 1 + (-0.173 + 0.984i)T \)
61 \( 1 + (0.939 + 0.342i)T \)
67 \( 1 + (0.984 - 0.173i)T \)
71 \( 1 + (0.939 - 0.342i)T \)
73 \( 1 + (-0.642 + 0.766i)T \)
79 \( 1 + (0.766 + 0.642i)T \)
83 \( 1 + (0.866 - 0.5i)T \)
89 \( 1 + (-0.766 + 0.642i)T \)
97 \( 1 + (-0.984 - 0.173i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−22.11575928865536331248729699458, −21.50296932871845535942479973730, −20.643134015466349221856039416012, −19.40288507219837781355952870230, −18.925434423561648488224372732678, −18.028876946500708767150003255516, −17.48040863199519879441210894146, −16.565093522072225380269111532106, −15.79054768439123103652835125394, −14.65594306525382571132853564046, −13.90532916058386091546218235635, −13.04246028445459096383920598733, −12.19177652388555389920768253825, −11.33869627622453243329802513084, −10.938767328691461962834889337511, −9.63986485877194683240462844117, −8.415452883921464585989392769229, −7.94155362370984090045339831714, −6.77430553199828026753483071637, −6.0227855306820711035423358429, −5.09383655291551403442024802420, −4.27306089886836964473669721795, −2.510839547839773874658873538707, −1.93814389626036392091066916048, −0.422841236686348237670871056774, 1.25740245021139799766955510478, 2.63899648986183781940425559505, 3.879174047194732012323292715924, 4.88000353738630575968331980856, 5.205899717535006215371456801863, 6.58153631464902577322243342097, 7.4564217475766663131675173838, 8.43208066452110896280895559490, 9.5720584549426314261438181822, 10.30714209828863551180844981593, 10.9682341508132892374608389629, 11.83730271295928907469290818967, 12.66127979603714317214080918324, 13.73100513448362566474021602362, 14.77404004103721040189053146496, 15.33867572806124537779954877865, 16.1179920850621920738490634257, 17.21683597966165589515765773194, 17.66971060457041640929557639546, 18.241082294841189741087177253212, 19.85275461245167187826454502605, 20.2589131499033481853837983450, 21.13776478749200477790896468250, 21.86400520391079985495350722780, 22.648150593608323453870831503604

Graph of the $Z$-function along the critical line