L(s) = 1 | + (0.984 − 0.173i)3-s + (−0.866 − 0.5i)7-s + (0.939 − 0.342i)9-s + (0.5 + 0.866i)11-s + (−0.984 − 0.173i)13-s + (0.342 − 0.939i)17-s + (−0.939 − 0.342i)21-s + (0.642 − 0.766i)23-s + (0.866 − 0.5i)27-s + (0.939 − 0.342i)29-s + (0.5 − 0.866i)31-s + (0.642 + 0.766i)33-s − i·37-s − 39-s + (−0.173 − 0.984i)41-s + ⋯ |
L(s) = 1 | + (0.984 − 0.173i)3-s + (−0.866 − 0.5i)7-s + (0.939 − 0.342i)9-s + (0.5 + 0.866i)11-s + (−0.984 − 0.173i)13-s + (0.342 − 0.939i)17-s + (−0.939 − 0.342i)21-s + (0.642 − 0.766i)23-s + (0.866 − 0.5i)27-s + (0.939 − 0.342i)29-s + (0.5 − 0.866i)31-s + (0.642 + 0.766i)33-s − i·37-s − 39-s + (−0.173 − 0.984i)41-s + ⋯ |
Λ(s)=(=(760s/2ΓR(s)L(s)(0.647−0.761i)Λ(1−s)
Λ(s)=(=(760s/2ΓR(s)L(s)(0.647−0.761i)Λ(1−s)
Degree: |
1 |
Conductor: |
760
= 23⋅5⋅19
|
Sign: |
0.647−0.761i
|
Analytic conductor: |
3.52942 |
Root analytic conductor: |
3.52942 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ760(477,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 760, (0: ), 0.647−0.761i)
|
Particular Values
L(21) |
≈ |
1.707391250−0.7891048687i |
L(21) |
≈ |
1.707391250−0.7891048687i |
L(1) |
≈ |
1.365387019−0.2606391198i |
L(1) |
≈ |
1.365387019−0.2606391198i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(0.984−0.173i)T |
| 7 | 1+(−0.866−0.5i)T |
| 11 | 1+(0.5+0.866i)T |
| 13 | 1+(−0.984−0.173i)T |
| 17 | 1+(0.342−0.939i)T |
| 23 | 1+(0.642−0.766i)T |
| 29 | 1+(0.939−0.342i)T |
| 31 | 1+(0.5−0.866i)T |
| 37 | 1−iT |
| 41 | 1+(−0.173−0.984i)T |
| 43 | 1+(0.642+0.766i)T |
| 47 | 1+(−0.342−0.939i)T |
| 53 | 1+(0.642−0.766i)T |
| 59 | 1+(0.939+0.342i)T |
| 61 | 1+(−0.766−0.642i)T |
| 67 | 1+(−0.342−0.939i)T |
| 71 | 1+(−0.766+0.642i)T |
| 73 | 1+(0.984−0.173i)T |
| 79 | 1+(0.173+0.984i)T |
| 83 | 1+(−0.866−0.5i)T |
| 89 | 1+(0.173−0.984i)T |
| 97 | 1+(−0.342+0.939i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.23760294365039637491206466475, −21.62910080796862116617845645975, −21.109942070549255252062377259872, −19.70289021328343531586000173896, −19.48503037807927859188411663521, −18.88061714201814557953919828887, −17.69844766744494803256744208300, −16.656921492065540311893090647870, −15.9639328410182328379085273958, −15.111584498545641078404361633638, −14.39583243017335722291091529683, −13.60018202491063714757118629876, −12.705626824237458677829920859275, −12.02104192446084660593516237721, −10.7176718077541779185787547024, −9.86282463038976561714686676512, −9.09877237196255624137363027514, −8.45930332208025823345943470472, −7.38986759006058321816246854640, −6.49836193678197838795235669652, −5.4516453262065514207941763224, −4.235413847452786350883939606171, −3.27513606332793737063827490342, −2.63418777134192913398839051980, −1.32987700477728807267241349526,
0.85458386458687140817515351589, 2.30052214832615045472808023134, 3.01254071218297330102638009119, 4.09418778838614091953870922216, 4.92166208225579520099438842376, 6.536596320167783242796394372334, 7.09403608445824013570862150677, 7.90430627948123506659854887157, 9.03615566875532957271138283873, 9.7966975950608953081810373523, 10.24668863059223975969893956264, 11.82631669208403381208853651213, 12.53510305259271174180984116382, 13.33150343452099502616991755091, 14.12909569535971725559674305778, 14.8902675766640278454281689232, 15.636482654070217952353539105055, 16.62686445904138063935559070400, 17.414367292006148519084680912420, 18.4728760148509880576727593225, 19.25284587795709138130425443269, 19.89286180321896628847645970242, 20.49067836035152987511127151266, 21.32016231473094290764637832919, 22.53498844443815685836482165147