Properties

Label 1-760-760.477-r0-0-0
Degree 11
Conductor 760760
Sign 0.6470.761i0.647 - 0.761i
Analytic cond. 3.529423.52942
Root an. cond. 3.529423.52942
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.984 − 0.173i)3-s + (−0.866 − 0.5i)7-s + (0.939 − 0.342i)9-s + (0.5 + 0.866i)11-s + (−0.984 − 0.173i)13-s + (0.342 − 0.939i)17-s + (−0.939 − 0.342i)21-s + (0.642 − 0.766i)23-s + (0.866 − 0.5i)27-s + (0.939 − 0.342i)29-s + (0.5 − 0.866i)31-s + (0.642 + 0.766i)33-s i·37-s − 39-s + (−0.173 − 0.984i)41-s + ⋯
L(s)  = 1  + (0.984 − 0.173i)3-s + (−0.866 − 0.5i)7-s + (0.939 − 0.342i)9-s + (0.5 + 0.866i)11-s + (−0.984 − 0.173i)13-s + (0.342 − 0.939i)17-s + (−0.939 − 0.342i)21-s + (0.642 − 0.766i)23-s + (0.866 − 0.5i)27-s + (0.939 − 0.342i)29-s + (0.5 − 0.866i)31-s + (0.642 + 0.766i)33-s i·37-s − 39-s + (−0.173 − 0.984i)41-s + ⋯

Functional equation

Λ(s)=(760s/2ΓR(s)L(s)=((0.6470.761i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.647 - 0.761i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(760s/2ΓR(s)L(s)=((0.6470.761i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.647 - 0.761i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 760760    =    235192^{3} \cdot 5 \cdot 19
Sign: 0.6470.761i0.647 - 0.761i
Analytic conductor: 3.529423.52942
Root analytic conductor: 3.529423.52942
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ760(477,)\chi_{760} (477, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 760, (0: ), 0.6470.761i)(1,\ 760,\ (0:\ ),\ 0.647 - 0.761i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.7073912500.7891048687i1.707391250 - 0.7891048687i
L(12)L(\frac12) \approx 1.7073912500.7891048687i1.707391250 - 0.7891048687i
L(1)L(1) \approx 1.3653870190.2606391198i1.365387019 - 0.2606391198i
L(1)L(1) \approx 1.3653870190.2606391198i1.365387019 - 0.2606391198i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
7 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
11 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
13 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
17 1+(0.3420.939i)T 1 + (0.342 - 0.939i)T
23 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
29 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
31 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
37 1iT 1 - iT
41 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
43 1+(0.642+0.766i)T 1 + (0.642 + 0.766i)T
47 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
53 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
59 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
61 1+(0.7660.642i)T 1 + (-0.766 - 0.642i)T
67 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
71 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
73 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
79 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
83 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
89 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
97 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.23760294365039637491206466475, −21.62910080796862116617845645975, −21.109942070549255252062377259872, −19.70289021328343531586000173896, −19.48503037807927859188411663521, −18.88061714201814557953919828887, −17.69844766744494803256744208300, −16.656921492065540311893090647870, −15.9639328410182328379085273958, −15.111584498545641078404361633638, −14.39583243017335722291091529683, −13.60018202491063714757118629876, −12.705626824237458677829920859275, −12.02104192446084660593516237721, −10.7176718077541779185787547024, −9.86282463038976561714686676512, −9.09877237196255624137363027514, −8.45930332208025823345943470472, −7.38986759006058321816246854640, −6.49836193678197838795235669652, −5.4516453262065514207941763224, −4.235413847452786350883939606171, −3.27513606332793737063827490342, −2.63418777134192913398839051980, −1.32987700477728807267241349526, 0.85458386458687140817515351589, 2.30052214832615045472808023134, 3.01254071218297330102638009119, 4.09418778838614091953870922216, 4.92166208225579520099438842376, 6.536596320167783242796394372334, 7.09403608445824013570862150677, 7.90430627948123506659854887157, 9.03615566875532957271138283873, 9.7966975950608953081810373523, 10.24668863059223975969893956264, 11.82631669208403381208853651213, 12.53510305259271174180984116382, 13.33150343452099502616991755091, 14.12909569535971725559674305778, 14.8902675766640278454281689232, 15.636482654070217952353539105055, 16.62686445904138063935559070400, 17.414367292006148519084680912420, 18.4728760148509880576727593225, 19.25284587795709138130425443269, 19.89286180321896628847645970242, 20.49067836035152987511127151266, 21.32016231473094290764637832919, 22.53498844443815685836482165147

Graph of the ZZ-function along the critical line