L(s) = 1 | + (−0.984 − 0.173i)3-s + (0.866 − 0.5i)7-s + (0.939 + 0.342i)9-s + (−0.5 + 0.866i)11-s + (−0.984 + 0.173i)13-s + (0.342 + 0.939i)17-s + (−0.939 + 0.342i)21-s + (−0.642 − 0.766i)23-s + (−0.866 − 0.5i)27-s + (0.939 + 0.342i)29-s + (−0.5 − 0.866i)31-s + (0.642 − 0.766i)33-s − i·37-s + 39-s + (−0.173 + 0.984i)41-s + ⋯ |
L(s) = 1 | + (−0.984 − 0.173i)3-s + (0.866 − 0.5i)7-s + (0.939 + 0.342i)9-s + (−0.5 + 0.866i)11-s + (−0.984 + 0.173i)13-s + (0.342 + 0.939i)17-s + (−0.939 + 0.342i)21-s + (−0.642 − 0.766i)23-s + (−0.866 − 0.5i)27-s + (0.939 + 0.342i)29-s + (−0.5 − 0.866i)31-s + (0.642 − 0.766i)33-s − i·37-s + 39-s + (−0.173 + 0.984i)41-s + ⋯ |
Λ(s)=(=(760s/2ΓR(s+1)L(s)(−0.647−0.761i)Λ(1−s)
Λ(s)=(=(760s/2ΓR(s+1)L(s)(−0.647−0.761i)Λ(1−s)
Degree: |
1 |
Conductor: |
760
= 23⋅5⋅19
|
Sign: |
−0.647−0.761i
|
Analytic conductor: |
81.6733 |
Root analytic conductor: |
81.6733 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ760(523,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 760, (1: ), −0.647−0.761i)
|
Particular Values
L(21) |
≈ |
0.2241036728−0.4848945499i |
L(21) |
≈ |
0.2241036728−0.4848945499i |
L(1) |
≈ |
0.7300886581−0.05601734690i |
L(1) |
≈ |
0.7300886581−0.05601734690i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(−0.984−0.173i)T |
| 7 | 1+(0.866−0.5i)T |
| 11 | 1+(−0.5+0.866i)T |
| 13 | 1+(−0.984+0.173i)T |
| 17 | 1+(0.342+0.939i)T |
| 23 | 1+(−0.642−0.766i)T |
| 29 | 1+(0.939+0.342i)T |
| 31 | 1+(−0.5−0.866i)T |
| 37 | 1−iT |
| 41 | 1+(−0.173+0.984i)T |
| 43 | 1+(−0.642+0.766i)T |
| 47 | 1+(0.342−0.939i)T |
| 53 | 1+(0.642+0.766i)T |
| 59 | 1+(−0.939+0.342i)T |
| 61 | 1+(−0.766+0.642i)T |
| 67 | 1+(0.342−0.939i)T |
| 71 | 1+(0.766+0.642i)T |
| 73 | 1+(0.984+0.173i)T |
| 79 | 1+(−0.173+0.984i)T |
| 83 | 1+(0.866−0.5i)T |
| 89 | 1+(0.173+0.984i)T |
| 97 | 1+(−0.342−0.939i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.36787169965423255790977564233, −21.70539893185358543704795010575, −21.18511976258059484539207486131, −20.21750331236649157600481077095, −19.0383768260606650820322565677, −18.34412334074639168126856527735, −17.635067483073328823646020011863, −16.932298989924712113462079092352, −15.963777656329836079376657225862, −15.41563875759182636799664889614, −14.325189514960366570379292836, −13.516317008263734716758461407656, −12.2255928338720736625940495362, −11.8787889897060751505950808212, −10.96060805344403562668671318366, −10.19403853157810449863082165846, −9.247266225066499744635940885349, −8.112218152147344683605519692721, −7.311717241346060259707100262030, −6.19562806880067125939912721120, −5.203005020487103109018894045735, −4.90469754265679771727329199206, −3.47537167631601707783792742358, −2.24852243002559790811767181518, −0.9772997041895131307815176315,
0.16186292515882233647105005170, 1.44152865277555904221926496314, 2.33874666334759757269366210077, 4.11666697753907482141927151840, 4.73176180825702905943342093195, 5.58841698525469953694066987105, 6.67796048083866473441271515371, 7.50143200493664000956447237674, 8.183933746074841186425519886033, 9.70526783206552936205887189227, 10.389763025467483104153300651058, 11.07955789537278037473353058271, 12.15131019756000698868241424848, 12.55954787859024527465098057595, 13.66003938243909584425908370483, 14.68463946258807901307138771567, 15.32710992569526359224456473457, 16.605890214960668645792077029774, 16.97379505462419438343379431378, 17.95571380456470881182193186514, 18.31059328994554651012089173633, 19.5622421305614451458108195021, 20.284078916535997101232077474526, 21.38804330204265357678716878691, 21.79297010324585633159547271905