Properties

Label 1-760-760.523-r1-0-0
Degree 11
Conductor 760760
Sign 0.6470.761i-0.647 - 0.761i
Analytic cond. 81.673381.6733
Root an. cond. 81.673381.6733
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.984 − 0.173i)3-s + (0.866 − 0.5i)7-s + (0.939 + 0.342i)9-s + (−0.5 + 0.866i)11-s + (−0.984 + 0.173i)13-s + (0.342 + 0.939i)17-s + (−0.939 + 0.342i)21-s + (−0.642 − 0.766i)23-s + (−0.866 − 0.5i)27-s + (0.939 + 0.342i)29-s + (−0.5 − 0.866i)31-s + (0.642 − 0.766i)33-s i·37-s + 39-s + (−0.173 + 0.984i)41-s + ⋯
L(s)  = 1  + (−0.984 − 0.173i)3-s + (0.866 − 0.5i)7-s + (0.939 + 0.342i)9-s + (−0.5 + 0.866i)11-s + (−0.984 + 0.173i)13-s + (0.342 + 0.939i)17-s + (−0.939 + 0.342i)21-s + (−0.642 − 0.766i)23-s + (−0.866 − 0.5i)27-s + (0.939 + 0.342i)29-s + (−0.5 − 0.866i)31-s + (0.642 − 0.766i)33-s i·37-s + 39-s + (−0.173 + 0.984i)41-s + ⋯

Functional equation

Λ(s)=(760s/2ΓR(s+1)L(s)=((0.6470.761i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.647 - 0.761i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(760s/2ΓR(s+1)L(s)=((0.6470.761i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.647 - 0.761i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 760760    =    235192^{3} \cdot 5 \cdot 19
Sign: 0.6470.761i-0.647 - 0.761i
Analytic conductor: 81.673381.6733
Root analytic conductor: 81.673381.6733
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ760(523,)\chi_{760} (523, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 760, (1: ), 0.6470.761i)(1,\ 760,\ (1:\ ),\ -0.647 - 0.761i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.22410367280.4848945499i0.2241036728 - 0.4848945499i
L(12)L(\frac12) \approx 0.22410367280.4848945499i0.2241036728 - 0.4848945499i
L(1)L(1) \approx 0.73008865810.05601734690i0.7300886581 - 0.05601734690i
L(1)L(1) \approx 0.73008865810.05601734690i0.7300886581 - 0.05601734690i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
7 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
11 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
13 1+(0.984+0.173i)T 1 + (-0.984 + 0.173i)T
17 1+(0.342+0.939i)T 1 + (0.342 + 0.939i)T
23 1+(0.6420.766i)T 1 + (-0.642 - 0.766i)T
29 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
31 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
37 1iT 1 - iT
41 1+(0.173+0.984i)T 1 + (-0.173 + 0.984i)T
43 1+(0.642+0.766i)T 1 + (-0.642 + 0.766i)T
47 1+(0.3420.939i)T 1 + (0.342 - 0.939i)T
53 1+(0.642+0.766i)T 1 + (0.642 + 0.766i)T
59 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
61 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
67 1+(0.3420.939i)T 1 + (0.342 - 0.939i)T
71 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
73 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
79 1+(0.173+0.984i)T 1 + (-0.173 + 0.984i)T
83 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
89 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
97 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.36787169965423255790977564233, −21.70539893185358543704795010575, −21.18511976258059484539207486131, −20.21750331236649157600481077095, −19.0383768260606650820322565677, −18.34412334074639168126856527735, −17.635067483073328823646020011863, −16.932298989924712113462079092352, −15.963777656329836079376657225862, −15.41563875759182636799664889614, −14.325189514960366570379292836, −13.516317008263734716758461407656, −12.2255928338720736625940495362, −11.8787889897060751505950808212, −10.96060805344403562668671318366, −10.19403853157810449863082165846, −9.247266225066499744635940885349, −8.112218152147344683605519692721, −7.311717241346060259707100262030, −6.19562806880067125939912721120, −5.203005020487103109018894045735, −4.90469754265679771727329199206, −3.47537167631601707783792742358, −2.24852243002559790811767181518, −0.9772997041895131307815176315, 0.16186292515882233647105005170, 1.44152865277555904221926496314, 2.33874666334759757269366210077, 4.11666697753907482141927151840, 4.73176180825702905943342093195, 5.58841698525469953694066987105, 6.67796048083866473441271515371, 7.50143200493664000956447237674, 8.183933746074841186425519886033, 9.70526783206552936205887189227, 10.389763025467483104153300651058, 11.07955789537278037473353058271, 12.15131019756000698868241424848, 12.55954787859024527465098057595, 13.66003938243909584425908370483, 14.68463946258807901307138771567, 15.32710992569526359224456473457, 16.605890214960668645792077029774, 16.97379505462419438343379431378, 17.95571380456470881182193186514, 18.31059328994554651012089173633, 19.5622421305614451458108195021, 20.284078916535997101232077474526, 21.38804330204265357678716878691, 21.79297010324585633159547271905

Graph of the ZZ-function along the critical line