Properties

Label 1-760-760.597-r0-0-0
Degree 11
Conductor 760760
Sign 0.127+0.991i-0.127 + 0.991i
Analytic cond. 3.529423.52942
Root an. cond. 3.529423.52942
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)3-s + i·7-s + (0.5 − 0.866i)9-s − 11-s + (0.866 + 0.5i)13-s + (0.866 − 0.5i)17-s + (−0.5 − 0.866i)21-s + (0.866 + 0.5i)23-s i·27-s + (0.5 − 0.866i)29-s − 31-s + (0.866 − 0.5i)33-s i·37-s − 39-s + (0.5 + 0.866i)41-s + ⋯
L(s)  = 1  + (−0.866 + 0.5i)3-s + i·7-s + (0.5 − 0.866i)9-s − 11-s + (0.866 + 0.5i)13-s + (0.866 − 0.5i)17-s + (−0.5 − 0.866i)21-s + (0.866 + 0.5i)23-s i·27-s + (0.5 − 0.866i)29-s − 31-s + (0.866 − 0.5i)33-s i·37-s − 39-s + (0.5 + 0.866i)41-s + ⋯

Functional equation

Λ(s)=(760s/2ΓR(s)L(s)=((0.127+0.991i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.127 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(760s/2ΓR(s)L(s)=((0.127+0.991i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.127 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 760760    =    235192^{3} \cdot 5 \cdot 19
Sign: 0.127+0.991i-0.127 + 0.991i
Analytic conductor: 3.529423.52942
Root analytic conductor: 3.529423.52942
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ760(597,)\chi_{760} (597, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 760, (0: ), 0.127+0.991i)(1,\ 760,\ (0:\ ),\ -0.127 + 0.991i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.6275337586+0.7133807137i0.6275337586 + 0.7133807137i
L(12)L(\frac12) \approx 0.6275337586+0.7133807137i0.6275337586 + 0.7133807137i
L(1)L(1) \approx 0.7741679747+0.2818989114i0.7741679747 + 0.2818989114i
L(1)L(1) \approx 0.7741679747+0.2818989114i0.7741679747 + 0.2818989114i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
7 1+iT 1 + iT
11 1T 1 - T
13 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
17 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
23 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
29 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
31 1T 1 - T
37 1iT 1 - iT
41 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
43 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
47 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
53 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
59 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
61 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
67 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
71 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
73 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
79 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
83 1iT 1 - iT
89 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
97 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.48569395902260504827004788440, −21.26458886798218771271399333552, −20.75882835923239409809913225558, −19.65680893854232745199424122983, −18.87125737930351496012998462766, −18.006001028674953841324824935011, −17.499072075213929120395756334496, −16.372377381120511962798618484029, −16.134002916290645815829309983731, −14.7938370783304680781080820680, −13.833188741695778461681444174400, −12.90070658744977391272193366798, −12.61272662357446956589562888693, −11.18531244467815918094811901634, −10.71865085523505972507200344712, −10.065026487966611314934089428607, −8.587218358752409438806400335446, −7.64060440535154382668679506957, −7.04996940971531596309562662144, −5.93161254976708452824951616037, −5.24072510355336029865548248171, −4.15891436124570254238445141278, −3.03281557118886712257514179344, −1.58715762442926598054583659303, −0.59531212268847674630530410959, 1.1572853253853268206204291732, 2.59849995832265760459346504029, 3.63804188135377230059892546405, 4.85187435323649471225070585608, 5.524098900669566841934619032184, 6.25190949240040548769190620371, 7.37257747796021771388347696221, 8.505805736035451347444217089194, 9.395173961033108886962980934675, 10.18345142040733668354635304474, 11.1847402820935994663795420943, 11.73701741168822553427971889516, 12.64314539817910023651642947556, 13.46977103614081860126366099151, 14.721401767115154712750931567403, 15.496210610844355743966295360894, 16.088878042964664828772946057760, 16.82646842140323932014923485199, 17.92108686751366071374221093299, 18.45265888444419193523604184764, 19.12893554185350659060178731920, 20.586742813355696901180364592376, 21.19797616079492700312792080773, 21.66605042961259898392943800614, 22.724738646457475840324919737403

Graph of the ZZ-function along the critical line