L(s) = 1 | + (−0.866 + 0.5i)3-s + i·7-s + (0.5 − 0.866i)9-s − 11-s + (0.866 + 0.5i)13-s + (0.866 − 0.5i)17-s + (−0.5 − 0.866i)21-s + (0.866 + 0.5i)23-s − i·27-s + (0.5 − 0.866i)29-s − 31-s + (0.866 − 0.5i)33-s − i·37-s − 39-s + (0.5 + 0.866i)41-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)3-s + i·7-s + (0.5 − 0.866i)9-s − 11-s + (0.866 + 0.5i)13-s + (0.866 − 0.5i)17-s + (−0.5 − 0.866i)21-s + (0.866 + 0.5i)23-s − i·27-s + (0.5 − 0.866i)29-s − 31-s + (0.866 − 0.5i)33-s − i·37-s − 39-s + (0.5 + 0.866i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.127 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.127 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6275337586 + 0.7133807137i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6275337586 + 0.7133807137i\) |
\(L(1)\) |
\(\approx\) |
\(0.7741679747 + 0.2818989114i\) |
\(L(1)\) |
\(\approx\) |
\(0.7741679747 + 0.2818989114i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + iT \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
| 17 | \( 1 + (0.866 - 0.5i)T \) |
| 23 | \( 1 + (0.866 + 0.5i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + (0.5 + 0.866i)T \) |
| 43 | \( 1 + (0.866 - 0.5i)T \) |
| 47 | \( 1 + (-0.866 - 0.5i)T \) |
| 53 | \( 1 + (0.866 + 0.5i)T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.48569395902260504827004788440, −21.26458886798218771271399333552, −20.75882835923239409809913225558, −19.65680893854232745199424122983, −18.87125737930351496012998462766, −18.006001028674953841324824935011, −17.499072075213929120395756334496, −16.372377381120511962798618484029, −16.134002916290645815829309983731, −14.7938370783304680781080820680, −13.833188741695778461681444174400, −12.90070658744977391272193366798, −12.61272662357446956589562888693, −11.18531244467815918094811901634, −10.71865085523505972507200344712, −10.065026487966611314934089428607, −8.587218358752409438806400335446, −7.64060440535154382668679506957, −7.04996940971531596309562662144, −5.93161254976708452824951616037, −5.24072510355336029865548248171, −4.15891436124570254238445141278, −3.03281557118886712257514179344, −1.58715762442926598054583659303, −0.59531212268847674630530410959,
1.1572853253853268206204291732, 2.59849995832265760459346504029, 3.63804188135377230059892546405, 4.85187435323649471225070585608, 5.524098900669566841934619032184, 6.25190949240040548769190620371, 7.37257747796021771388347696221, 8.505805736035451347444217089194, 9.395173961033108886962980934675, 10.18345142040733668354635304474, 11.1847402820935994663795420943, 11.73701741168822553427971889516, 12.64314539817910023651642947556, 13.46977103614081860126366099151, 14.721401767115154712750931567403, 15.496210610844355743966295360894, 16.088878042964664828772946057760, 16.82646842140323932014923485199, 17.92108686751366071374221093299, 18.45265888444419193523604184764, 19.12893554185350659060178731920, 20.586742813355696901180364592376, 21.19797616079492700312792080773, 21.66605042961259898392943800614, 22.724738646457475840324919737403