L(s) = 1 | + (0.866 + 0.5i)3-s − i·7-s + (0.5 + 0.866i)9-s − 11-s + (−0.866 + 0.5i)13-s + (0.866 + 0.5i)17-s + (0.5 − 0.866i)21-s + (0.866 − 0.5i)23-s − i·27-s + (−0.5 − 0.866i)29-s + 31-s + (−0.866 − 0.5i)33-s − i·37-s − 39-s + (−0.5 + 0.866i)41-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)3-s − i·7-s + (0.5 + 0.866i)9-s − 11-s + (−0.866 + 0.5i)13-s + (0.866 + 0.5i)17-s + (0.5 − 0.866i)21-s + (0.866 − 0.5i)23-s − i·27-s + (−0.5 − 0.866i)29-s + 31-s + (−0.866 − 0.5i)33-s − i·37-s − 39-s + (−0.5 + 0.866i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.277 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.277 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.200722709 + 1.595930472i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.200722709 + 1.595930472i\) |
\(L(1)\) |
\(\approx\) |
\(1.240580343 + 0.3027254113i\) |
\(L(1)\) |
\(\approx\) |
\(1.240580343 + 0.3027254113i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + (-0.866 + 0.5i)T \) |
| 17 | \( 1 + (0.866 + 0.5i)T \) |
| 23 | \( 1 + (0.866 - 0.5i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + (-0.5 + 0.866i)T \) |
| 43 | \( 1 + (0.866 + 0.5i)T \) |
| 47 | \( 1 + (-0.866 + 0.5i)T \) |
| 53 | \( 1 + (-0.866 + 0.5i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.866 - 0.5i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.866 - 0.5i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.81386383654984557793149836525, −21.03460463277668755926391157087, −20.45680605210619699487689830957, −19.355666153132614044267651596467, −18.86875829107009889304563232709, −18.12011456205094628612284498492, −17.33650889352618504873041617261, −16.01069949454811101484123551630, −15.3522924080870332221588024830, −14.64138549531333231062654975879, −13.83200363718616916684686714485, −12.712973066562831297755317557400, −12.46525229033199896506399475623, −11.319395102434398252093727595064, −10.074557383545649428959274854442, −9.37049663202854322124111180111, −8.4587028044616497907810821473, −7.69824365204344645710239406188, −6.95305346528506333746603774775, −5.63246606390315533255782078594, −4.962271193430562212332265141186, −3.36118393042038155293492321592, −2.73216448786843693509378207903, −1.833554493411624165000373028662, −0.39743628650775769226510391989,
1.17922822501620431759927976442, 2.48346437954756947158192840459, 3.28636927619505565052359224318, 4.40440407116437081582472564528, 4.980094633859345953743402380475, 6.43522212883918696264740195507, 7.63110901581602765941733828684, 7.93903463007944535195341814886, 9.167622527455673524689133155921, 10.07920045433603140153940013234, 10.4741044313210733951262107803, 11.62423687750792522244756718219, 12.89766969081935751125207703733, 13.44802432842891267455693972275, 14.39875254909777814986369478852, 14.94760911664404339600085590791, 15.93517356758533943976254596031, 16.7219232261966259618105150995, 17.38850031413762598575730562106, 18.765110178588335528694994793762, 19.22627786439771417527640679125, 20.13516815991213297833273440226, 20.91165212771226810154862594702, 21.313276226843791511417691876793, 22.414362713418213594503476498876