Properties

Label 1-760-760.653-r1-0-0
Degree 11
Conductor 760760
Sign 0.277+0.960i-0.277 + 0.960i
Analytic cond. 81.673381.6733
Root an. cond. 81.673381.6733
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)3-s i·7-s + (0.5 + 0.866i)9-s − 11-s + (−0.866 + 0.5i)13-s + (0.866 + 0.5i)17-s + (0.5 − 0.866i)21-s + (0.866 − 0.5i)23-s i·27-s + (−0.5 − 0.866i)29-s + 31-s + (−0.866 − 0.5i)33-s i·37-s − 39-s + (−0.5 + 0.866i)41-s + ⋯
L(s)  = 1  + (0.866 + 0.5i)3-s i·7-s + (0.5 + 0.866i)9-s − 11-s + (−0.866 + 0.5i)13-s + (0.866 + 0.5i)17-s + (0.5 − 0.866i)21-s + (0.866 − 0.5i)23-s i·27-s + (−0.5 − 0.866i)29-s + 31-s + (−0.866 − 0.5i)33-s i·37-s − 39-s + (−0.5 + 0.866i)41-s + ⋯

Functional equation

Λ(s)=(760s/2ΓR(s+1)L(s)=((0.277+0.960i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.277 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(760s/2ΓR(s+1)L(s)=((0.277+0.960i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.277 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 760760    =    235192^{3} \cdot 5 \cdot 19
Sign: 0.277+0.960i-0.277 + 0.960i
Analytic conductor: 81.673381.6733
Root analytic conductor: 81.673381.6733
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ760(653,)\chi_{760} (653, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 760, (1: ), 0.277+0.960i)(1,\ 760,\ (1:\ ),\ -0.277 + 0.960i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.200722709+1.595930472i1.200722709 + 1.595930472i
L(12)L(\frac12) \approx 1.200722709+1.595930472i1.200722709 + 1.595930472i
L(1)L(1) \approx 1.240580343+0.3027254113i1.240580343 + 0.3027254113i
L(1)L(1) \approx 1.240580343+0.3027254113i1.240580343 + 0.3027254113i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
7 1iT 1 - iT
11 1T 1 - T
13 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
17 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
23 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
29 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
31 1+T 1 + T
37 1iT 1 - iT
41 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
43 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
47 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
53 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
59 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
61 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
67 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
71 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
73 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
79 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
83 1iT 1 - iT
89 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
97 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.81386383654984557793149836525, −21.03460463277668755926391157087, −20.45680605210619699487689830957, −19.355666153132614044267651596467, −18.86875829107009889304563232709, −18.12011456205094628612284498492, −17.33650889352618504873041617261, −16.01069949454811101484123551630, −15.3522924080870332221588024830, −14.64138549531333231062654975879, −13.83200363718616916684686714485, −12.712973066562831297755317557400, −12.46525229033199896506399475623, −11.319395102434398252093727595064, −10.074557383545649428959274854442, −9.37049663202854322124111180111, −8.4587028044616497907810821473, −7.69824365204344645710239406188, −6.95305346528506333746603774775, −5.63246606390315533255782078594, −4.962271193430562212332265141186, −3.36118393042038155293492321592, −2.73216448786843693509378207903, −1.833554493411624165000373028662, −0.39743628650775769226510391989, 1.17922822501620431759927976442, 2.48346437954756947158192840459, 3.28636927619505565052359224318, 4.40440407116437081582472564528, 4.980094633859345953743402380475, 6.43522212883918696264740195507, 7.63110901581602765941733828684, 7.93903463007944535195341814886, 9.167622527455673524689133155921, 10.07920045433603140153940013234, 10.4741044313210733951262107803, 11.62423687750792522244756718219, 12.89766969081935751125207703733, 13.44802432842891267455693972275, 14.39875254909777814986369478852, 14.94760911664404339600085590791, 15.93517356758533943976254596031, 16.7219232261966259618105150995, 17.38850031413762598575730562106, 18.765110178588335528694994793762, 19.22627786439771417527640679125, 20.13516815991213297833273440226, 20.91165212771226810154862594702, 21.313276226843791511417691876793, 22.414362713418213594503476498876

Graph of the ZZ-function along the critical line