Properties

Label 1-760-760.93-r1-0-0
Degree 11
Conductor 760760
Sign 0.128+0.991i-0.128 + 0.991i
Analytic cond. 81.673381.6733
Root an. cond. 81.673381.6733
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.984 − 0.173i)3-s + (0.866 + 0.5i)7-s + (0.939 − 0.342i)9-s + (0.5 + 0.866i)11-s + (−0.984 − 0.173i)13-s + (−0.342 + 0.939i)17-s + (0.939 + 0.342i)21-s + (−0.642 + 0.766i)23-s + (0.866 − 0.5i)27-s + (−0.939 + 0.342i)29-s + (−0.5 + 0.866i)31-s + (0.642 + 0.766i)33-s i·37-s − 39-s + (0.173 + 0.984i)41-s + ⋯
L(s)  = 1  + (0.984 − 0.173i)3-s + (0.866 + 0.5i)7-s + (0.939 − 0.342i)9-s + (0.5 + 0.866i)11-s + (−0.984 − 0.173i)13-s + (−0.342 + 0.939i)17-s + (0.939 + 0.342i)21-s + (−0.642 + 0.766i)23-s + (0.866 − 0.5i)27-s + (−0.939 + 0.342i)29-s + (−0.5 + 0.866i)31-s + (0.642 + 0.766i)33-s i·37-s − 39-s + (0.173 + 0.984i)41-s + ⋯

Functional equation

Λ(s)=(760s/2ΓR(s+1)L(s)=((0.128+0.991i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.128 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(760s/2ΓR(s+1)L(s)=((0.128+0.991i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.128 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 760760    =    235192^{3} \cdot 5 \cdot 19
Sign: 0.128+0.991i-0.128 + 0.991i
Analytic conductor: 81.673381.6733
Root analytic conductor: 81.673381.6733
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ760(93,)\chi_{760} (93, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 760, (1: ), 0.128+0.991i)(1,\ 760,\ (1:\ ),\ -0.128 + 0.991i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.781259005+2.026741517i1.781259005 + 2.026741517i
L(12)L(\frac12) \approx 1.781259005+2.026741517i1.781259005 + 2.026741517i
L(1)L(1) \approx 1.483536822+0.3234367420i1.483536822 + 0.3234367420i
L(1)L(1) \approx 1.483536822+0.3234367420i1.483536822 + 0.3234367420i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
7 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
11 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
13 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
17 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
23 1+(0.642+0.766i)T 1 + (-0.642 + 0.766i)T
29 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
31 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
37 1iT 1 - iT
41 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
43 1+(0.6420.766i)T 1 + (-0.642 - 0.766i)T
47 1+(0.342+0.939i)T 1 + (0.342 + 0.939i)T
53 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
59 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
61 1+(0.7660.642i)T 1 + (-0.766 - 0.642i)T
67 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
71 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
73 1+(0.984+0.173i)T 1 + (-0.984 + 0.173i)T
79 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
83 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
89 1+(0.173+0.984i)T 1 + (-0.173 + 0.984i)T
97 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.83920011611133695475249463851, −21.12255735800008018430364211795, −20.27418171137935138311695992178, −19.80403538932420933678379689357, −18.81364123253481077506389790778, −18.132967744244973447255663489341, −16.97492640538566668526352844363, −16.3714701296491687147381595763, −15.26907037026351412577042521016, −14.49200742017279617732106918942, −13.98960275910318914949277550542, −13.218175838094515179101400083245, −12.04306190682531580992719747684, −11.18108632504908017686445103180, −10.26527993204427299102638293040, −9.31304109439674505912837925072, −8.62508028614084094670444711668, −7.634294029960210149983302192431, −7.09203806852108384099335236361, −5.66678190972186508010457548057, −4.521191836562251976567355474623, −3.89356864554098551017601655131, −2.66783003359886126902030908101, −1.82033709824723855531403112363, −0.47627960924019079717962521333, 1.56226245122343193722145523952, 2.03294307177652210597763688951, 3.25528603680213563470792006992, 4.3092860566459810533199468862, 5.137641348364465306546884626812, 6.46384016465553926807171751098, 7.47367722722609043349042603401, 8.07463223285663939855154444061, 9.05211473895817424209002383148, 9.71461946376203592285965903178, 10.73039799166551004107915794245, 11.95305164426342824830350812352, 12.50384507683018997916711898053, 13.48773120850002216056001014902, 14.49365439546105607922174865125, 14.925037284362370221777671227734, 15.55218582980464195167148950949, 16.904798566118433672881420797541, 17.71607357523205241854544719776, 18.375110504115473080650016233758, 19.40415998124243060133913043038, 19.98841028209133509466696600945, 20.66518209357750326190405817737, 21.70860617192290510767942553652, 22.064978344350585166769971305269

Graph of the ZZ-function along the critical line