L(s) = 1 | + (0.984 − 0.173i)3-s + (0.866 + 0.5i)7-s + (0.939 − 0.342i)9-s + (0.5 + 0.866i)11-s + (−0.984 − 0.173i)13-s + (−0.342 + 0.939i)17-s + (0.939 + 0.342i)21-s + (−0.642 + 0.766i)23-s + (0.866 − 0.5i)27-s + (−0.939 + 0.342i)29-s + (−0.5 + 0.866i)31-s + (0.642 + 0.766i)33-s − i·37-s − 39-s + (0.173 + 0.984i)41-s + ⋯ |
L(s) = 1 | + (0.984 − 0.173i)3-s + (0.866 + 0.5i)7-s + (0.939 − 0.342i)9-s + (0.5 + 0.866i)11-s + (−0.984 − 0.173i)13-s + (−0.342 + 0.939i)17-s + (0.939 + 0.342i)21-s + (−0.642 + 0.766i)23-s + (0.866 − 0.5i)27-s + (−0.939 + 0.342i)29-s + (−0.5 + 0.866i)31-s + (0.642 + 0.766i)33-s − i·37-s − 39-s + (0.173 + 0.984i)41-s + ⋯ |
Λ(s)=(=(760s/2ΓR(s+1)L(s)(−0.128+0.991i)Λ(1−s)
Λ(s)=(=(760s/2ΓR(s+1)L(s)(−0.128+0.991i)Λ(1−s)
Degree: |
1 |
Conductor: |
760
= 23⋅5⋅19
|
Sign: |
−0.128+0.991i
|
Analytic conductor: |
81.6733 |
Root analytic conductor: |
81.6733 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ760(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 760, (1: ), −0.128+0.991i)
|
Particular Values
L(21) |
≈ |
1.781259005+2.026741517i |
L(21) |
≈ |
1.781259005+2.026741517i |
L(1) |
≈ |
1.483536822+0.3234367420i |
L(1) |
≈ |
1.483536822+0.3234367420i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(0.984−0.173i)T |
| 7 | 1+(0.866+0.5i)T |
| 11 | 1+(0.5+0.866i)T |
| 13 | 1+(−0.984−0.173i)T |
| 17 | 1+(−0.342+0.939i)T |
| 23 | 1+(−0.642+0.766i)T |
| 29 | 1+(−0.939+0.342i)T |
| 31 | 1+(−0.5+0.866i)T |
| 37 | 1−iT |
| 41 | 1+(0.173+0.984i)T |
| 43 | 1+(−0.642−0.766i)T |
| 47 | 1+(0.342+0.939i)T |
| 53 | 1+(0.642−0.766i)T |
| 59 | 1+(−0.939−0.342i)T |
| 61 | 1+(−0.766−0.642i)T |
| 67 | 1+(−0.342−0.939i)T |
| 71 | 1+(0.766−0.642i)T |
| 73 | 1+(−0.984+0.173i)T |
| 79 | 1+(−0.173−0.984i)T |
| 83 | 1+(0.866+0.5i)T |
| 89 | 1+(−0.173+0.984i)T |
| 97 | 1+(−0.342+0.939i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.83920011611133695475249463851, −21.12255735800008018430364211795, −20.27418171137935138311695992178, −19.80403538932420933678379689357, −18.81364123253481077506389790778, −18.132967744244973447255663489341, −16.97492640538566668526352844363, −16.3714701296491687147381595763, −15.26907037026351412577042521016, −14.49200742017279617732106918942, −13.98960275910318914949277550542, −13.218175838094515179101400083245, −12.04306190682531580992719747684, −11.18108632504908017686445103180, −10.26527993204427299102638293040, −9.31304109439674505912837925072, −8.62508028614084094670444711668, −7.634294029960210149983302192431, −7.09203806852108384099335236361, −5.66678190972186508010457548057, −4.521191836562251976567355474623, −3.89356864554098551017601655131, −2.66783003359886126902030908101, −1.82033709824723855531403112363, −0.47627960924019079717962521333,
1.56226245122343193722145523952, 2.03294307177652210597763688951, 3.25528603680213563470792006992, 4.3092860566459810533199468862, 5.137641348364465306546884626812, 6.46384016465553926807171751098, 7.47367722722609043349042603401, 8.07463223285663939855154444061, 9.05211473895817424209002383148, 9.71461946376203592285965903178, 10.73039799166551004107915794245, 11.95305164426342824830350812352, 12.50384507683018997916711898053, 13.48773120850002216056001014902, 14.49365439546105607922174865125, 14.925037284362370221777671227734, 15.55218582980464195167148950949, 16.904798566118433672881420797541, 17.71607357523205241854544719776, 18.375110504115473080650016233758, 19.40415998124243060133913043038, 19.98841028209133509466696600945, 20.66518209357750326190405817737, 21.70860617192290510767942553652, 22.064978344350585166769971305269