L(s) = 1 | + (0.453 − 0.891i)3-s − i·7-s + (−0.587 − 0.809i)9-s + (−0.987 + 0.156i)11-s + (−0.987 − 0.156i)13-s + (0.309 − 0.951i)17-s + (−0.891 + 0.453i)19-s + (0.891 + 0.453i)21-s + (−0.587 + 0.809i)23-s + (−0.987 + 0.156i)27-s + (−0.453 + 0.891i)29-s + (0.309 − 0.951i)31-s + (−0.309 + 0.951i)33-s + (−0.156 + 0.987i)37-s + (−0.587 + 0.809i)39-s + ⋯ |
L(s) = 1 | + (0.453 − 0.891i)3-s − i·7-s + (−0.587 − 0.809i)9-s + (−0.987 + 0.156i)11-s + (−0.987 − 0.156i)13-s + (0.309 − 0.951i)17-s + (−0.891 + 0.453i)19-s + (0.891 + 0.453i)21-s + (−0.587 + 0.809i)23-s + (−0.987 + 0.156i)27-s + (−0.453 + 0.891i)29-s + (0.309 − 0.951i)31-s + (−0.309 + 0.951i)33-s + (−0.156 + 0.987i)37-s + (−0.587 + 0.809i)39-s + ⋯ |
Λ(s)=(=(800s/2ΓR(s)L(s)(−0.744+0.667i)Λ(1−s)
Λ(s)=(=(800s/2ΓR(s)L(s)(−0.744+0.667i)Λ(1−s)
Degree: |
1 |
Conductor: |
800
= 25⋅52
|
Sign: |
−0.744+0.667i
|
Analytic conductor: |
3.71518 |
Root analytic conductor: |
3.71518 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 800, (0: ), −0.744+0.667i)
|
Particular Values
L(21) |
≈ |
0.04250856412+0.1111733464i |
L(21) |
≈ |
0.04250856412+0.1111733464i |
L(1) |
≈ |
0.8012595597−0.1367036863i |
L(1) |
≈ |
0.8012595597−0.1367036863i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(0.453−0.891i)T |
| 7 | 1−iT |
| 11 | 1+(−0.987+0.156i)T |
| 13 | 1+(−0.987−0.156i)T |
| 17 | 1+(0.309−0.951i)T |
| 19 | 1+(−0.891+0.453i)T |
| 23 | 1+(−0.587+0.809i)T |
| 29 | 1+(−0.453+0.891i)T |
| 31 | 1+(0.309−0.951i)T |
| 37 | 1+(−0.156+0.987i)T |
| 41 | 1+(−0.587−0.809i)T |
| 43 | 1+(−0.707+0.707i)T |
| 47 | 1+(0.309+0.951i)T |
| 53 | 1+(−0.891−0.453i)T |
| 59 | 1+(0.156−0.987i)T |
| 61 | 1+(−0.156−0.987i)T |
| 67 | 1+(−0.891+0.453i)T |
| 71 | 1+(0.951−0.309i)T |
| 73 | 1+(−0.587+0.809i)T |
| 79 | 1+(−0.309−0.951i)T |
| 83 | 1+(0.891−0.453i)T |
| 89 | 1+(−0.587+0.809i)T |
| 97 | 1+(−0.309−0.951i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.71331144275658151839341429181, −21.23827094796171116922119523525, −20.3778408448262134816532498905, −19.676836933052832004136153616146, −19.037847695193154673421330969675, −17.77299379014134676394262435372, −16.89062606224315196531493894315, −16.43866376682529345808849511912, −15.34756011111836928847672829910, −14.774973991902258944231016955943, −13.88479267140150796807651971847, −13.16709709539713813439354494066, −12.144089677758760625837874576609, −10.82675901547638802747535171361, −10.42488257574683077965968395173, −9.720759433706399579253851219146, −8.540253288905647716189132671046, −7.90675239673290453980509324982, −6.917425690658116077655751551943, −5.66984405148477398509807121441, −4.65723960265707927900875677508, −4.03391432838767572045172990684, −2.95106820804787292862133007563, −1.98565617402799615744960376189, −0.04555301495920289678951418276,
1.73494179078893221970259443986, 2.51024595173160923429923743381, 3.29434894729724190574792750175, 4.88537996274905650143417282645, 5.67379227436974365724388211081, 6.65838029670309328386975771197, 7.68417758794304441638442131427, 8.18372631313619838691075956705, 9.26845596749209242496965962810, 9.96872500358544843809449821995, 11.31001045610457640719648233338, 12.142710594917509319288117147298, 12.7055670708916418888306717265, 13.53024323680997959519023818268, 14.50642009757676670695466342066, 15.14088748874063447155122326396, 15.97916994312135282070173120546, 17.16432044842582901446329578993, 17.920912551520060547818648430639, 18.7372392084009405479349240200, 19.080980772084968858861119701865, 20.21554841495397589858893030492, 20.80338483192481706428423355637, 21.79117766565311333907165157615, 22.586526887724518826078198687921