L(s) = 1 | + (−0.891 − 0.453i)3-s + 7-s + (0.587 + 0.809i)9-s + (−0.987 + 0.156i)11-s + (0.156 − 0.987i)13-s + (0.951 + 0.309i)17-s + (0.891 − 0.453i)19-s + (−0.891 − 0.453i)21-s + (−0.809 − 0.587i)23-s + (−0.156 − 0.987i)27-s + (−0.453 + 0.891i)29-s + (−0.309 + 0.951i)31-s + (0.951 + 0.309i)33-s + (0.987 + 0.156i)37-s + (−0.587 + 0.809i)39-s + ⋯ |
L(s) = 1 | + (−0.891 − 0.453i)3-s + 7-s + (0.587 + 0.809i)9-s + (−0.987 + 0.156i)11-s + (0.156 − 0.987i)13-s + (0.951 + 0.309i)17-s + (0.891 − 0.453i)19-s + (−0.891 − 0.453i)21-s + (−0.809 − 0.587i)23-s + (−0.156 − 0.987i)27-s + (−0.453 + 0.891i)29-s + (−0.309 + 0.951i)31-s + (0.951 + 0.309i)33-s + (0.987 + 0.156i)37-s + (−0.587 + 0.809i)39-s + ⋯ |
Λ(s)=(=(800s/2ΓR(s)L(s)(0.744−0.667i)Λ(1−s)
Λ(s)=(=(800s/2ΓR(s)L(s)(0.744−0.667i)Λ(1−s)
Degree: |
1 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.744−0.667i
|
Analytic conductor: |
3.71518 |
Root analytic conductor: |
3.71518 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(403,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 800, (0: ), 0.744−0.667i)
|
Particular Values
L(21) |
≈ |
1.080968930−0.4133224243i |
L(21) |
≈ |
1.080968930−0.4133224243i |
L(1) |
≈ |
0.9037210673−0.1647684250i |
L(1) |
≈ |
0.9037210673−0.1647684250i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(−0.891−0.453i)T |
| 7 | 1+T |
| 11 | 1+(−0.987+0.156i)T |
| 13 | 1+(0.156−0.987i)T |
| 17 | 1+(0.951+0.309i)T |
| 19 | 1+(0.891−0.453i)T |
| 23 | 1+(−0.809−0.587i)T |
| 29 | 1+(−0.453+0.891i)T |
| 31 | 1+(−0.309+0.951i)T |
| 37 | 1+(0.987+0.156i)T |
| 41 | 1+(−0.587−0.809i)T |
| 43 | 1+(0.707+0.707i)T |
| 47 | 1+(0.951−0.309i)T |
| 53 | 1+(0.453−0.891i)T |
| 59 | 1+(−0.156+0.987i)T |
| 61 | 1+(0.156+0.987i)T |
| 67 | 1+(−0.453−0.891i)T |
| 71 | 1+(−0.951+0.309i)T |
| 73 | 1+(0.809+0.587i)T |
| 79 | 1+(−0.309−0.951i)T |
| 83 | 1+(−0.453−0.891i)T |
| 89 | 1+(0.587−0.809i)T |
| 97 | 1+(0.951−0.309i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.26479021666622877157585511808, −21.52668822111900672538076494507, −20.895868975736472239421901926778, −20.318102351678765033814673916706, −18.67099379166396609724469745275, −18.47061649538249060089407744682, −17.46869051585813927091748264379, −16.70778231317225571435991555303, −16.007727643762523091210214368899, −15.21141800762414300145286240574, −14.26403974897847873188433258938, −13.46801573318234425934483874468, −12.23238772658128243594939441510, −11.608588846831830956185358171297, −10.98325221599886788189514035587, −9.99641368775566094881090593005, −9.32254237903601287332960515631, −7.95429524342163516388077478845, −7.401540397102884328550075152916, −5.98771876891893926085326131486, −5.44594216055480581731559163588, −4.51691046215438179483130972866, −3.66185776803618705272770348333, −2.18097192878865124196736999556, −0.99035725275496042617260735029,
0.79348077733514253460288795296, 1.8415118611705322194873876625, 3.03747983764249007481193137279, 4.47867143667788716246187979880, 5.37167558944257799705450466241, 5.79701002356323300937588564469, 7.26906580103281203361988306774, 7.72008481914626513683507583669, 8.63324153372599087678143793082, 10.18686356785042841652498000498, 10.59441945778950192495837351615, 11.529630824558390989807319891413, 12.32637299145347527258309827921, 13.03149931053138310251778574435, 13.96379200600026157211204041054, 14.90308136316050986379038144188, 15.85673409085428454314257796696, 16.56495830982116129951514108574, 17.58153439191586253605660070277, 18.12737493819899537475086048761, 18.565612627980538085014264754588, 19.84059537509283258898908479274, 20.622592177374659739882207087347, 21.448119086482949415428622312, 22.24350650946235957300689580267