L(s) = 1 | + (0.987 + 0.156i)3-s − i·7-s + (0.951 + 0.309i)9-s + (0.891 + 0.453i)11-s + (0.891 − 0.453i)13-s + (−0.809 − 0.587i)17-s + (0.156 + 0.987i)19-s + (−0.156 + 0.987i)21-s + (0.951 − 0.309i)23-s + (0.891 + 0.453i)27-s + (−0.987 − 0.156i)29-s + (−0.809 − 0.587i)31-s + (0.809 + 0.587i)33-s + (−0.453 − 0.891i)37-s + (0.951 − 0.309i)39-s + ⋯ |
L(s) = 1 | + (0.987 + 0.156i)3-s − i·7-s + (0.951 + 0.309i)9-s + (0.891 + 0.453i)11-s + (0.891 − 0.453i)13-s + (−0.809 − 0.587i)17-s + (0.156 + 0.987i)19-s + (−0.156 + 0.987i)21-s + (0.951 − 0.309i)23-s + (0.891 + 0.453i)27-s + (−0.987 − 0.156i)29-s + (−0.809 − 0.587i)31-s + (0.809 + 0.587i)33-s + (−0.453 − 0.891i)37-s + (0.951 − 0.309i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.712 + 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.712 + 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.119163092 + 0.8680521251i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.119163092 + 0.8680521251i\) |
\(L(1)\) |
\(\approx\) |
\(1.562089351 + 0.3184510603i\) |
\(L(1)\) |
\(\approx\) |
\(1.562089351 + 0.3184510603i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (0.987 + 0.156i)T \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 + (0.891 + 0.453i)T \) |
| 13 | \( 1 + (0.891 - 0.453i)T \) |
| 17 | \( 1 + (-0.809 - 0.587i)T \) |
| 19 | \( 1 + (0.156 + 0.987i)T \) |
| 23 | \( 1 + (0.951 - 0.309i)T \) |
| 29 | \( 1 + (-0.987 - 0.156i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + (-0.453 - 0.891i)T \) |
| 41 | \( 1 + (0.951 + 0.309i)T \) |
| 43 | \( 1 + (-0.707 + 0.707i)T \) |
| 47 | \( 1 + (-0.809 + 0.587i)T \) |
| 53 | \( 1 + (0.156 - 0.987i)T \) |
| 59 | \( 1 + (0.453 + 0.891i)T \) |
| 61 | \( 1 + (-0.453 + 0.891i)T \) |
| 67 | \( 1 + (0.156 + 0.987i)T \) |
| 71 | \( 1 + (0.587 + 0.809i)T \) |
| 73 | \( 1 + (0.951 - 0.309i)T \) |
| 79 | \( 1 + (0.809 - 0.587i)T \) |
| 83 | \( 1 + (-0.156 - 0.987i)T \) |
| 89 | \( 1 + (0.951 - 0.309i)T \) |
| 97 | \( 1 + (0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.99103839136145855374437946097, −21.29978960633761672262209355037, −20.37032609790245466628607625342, −19.83148129991745219098464823658, −19.16399522131802084690712913583, −18.29130918021614001341387518062, −17.294886071844434974511277788573, −16.55409760905204961757968263321, −15.553693051999878286338472540, −14.81170284322817845454157385122, −13.814674528468108622665433734719, −13.506162789725863794422787221291, −12.60737592381962906760755834584, −11.25348660024489454527011193062, −10.751993555750342300541777866924, −9.4226131021966552978619365892, −8.9401760856586843467956161884, −8.03546653265548338936117712104, −6.93638866964943725122762640772, −6.54565522165457538581392016799, −4.922089417261864148203771613136, −3.82280109008155136313476690355, −3.420796603063674553948822597960, −1.94947026780164996108120762939, −1.06558360197959711751571670147,
1.46072217093745349782745739513, 2.3540593868332666957587272502, 3.37577786029322271577030244633, 4.20687635135974532312087790452, 5.35382985591893150926021764654, 6.38948031919337207804829824139, 7.39648127188514586461580084930, 8.35536862065451331755457165714, 9.10935944208441786018240100665, 9.60088603973476639913106484476, 10.83368398533913068481068333808, 11.71146167746012959772693834878, 12.78493219430439054791209030051, 13.30933809330217696750089094507, 14.59435955461620080320983567005, 14.81910679319313132166178546899, 15.8231550530063445965271237070, 16.46653349724972177081723449828, 17.80217861197258468864969172935, 18.4469527352740828785289134760, 19.19434663805197943821639236972, 20.02695561170507485573663997093, 20.76403706884909997679361943892, 21.36219333973167566543324488829, 22.44687871112083667462474939781