Properties

Label 1-800-800.509-r0-0-0
Degree 11
Conductor 800800
Sign 0.712+0.701i0.712 + 0.701i
Analytic cond. 3.715183.71518
Root an. cond. 3.715183.71518
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.987 + 0.156i)3-s i·7-s + (0.951 + 0.309i)9-s + (0.891 + 0.453i)11-s + (0.891 − 0.453i)13-s + (−0.809 − 0.587i)17-s + (0.156 + 0.987i)19-s + (−0.156 + 0.987i)21-s + (0.951 − 0.309i)23-s + (0.891 + 0.453i)27-s + (−0.987 − 0.156i)29-s + (−0.809 − 0.587i)31-s + (0.809 + 0.587i)33-s + (−0.453 − 0.891i)37-s + (0.951 − 0.309i)39-s + ⋯
L(s)  = 1  + (0.987 + 0.156i)3-s i·7-s + (0.951 + 0.309i)9-s + (0.891 + 0.453i)11-s + (0.891 − 0.453i)13-s + (−0.809 − 0.587i)17-s + (0.156 + 0.987i)19-s + (−0.156 + 0.987i)21-s + (0.951 − 0.309i)23-s + (0.891 + 0.453i)27-s + (−0.987 − 0.156i)29-s + (−0.809 − 0.587i)31-s + (0.809 + 0.587i)33-s + (−0.453 − 0.891i)37-s + (0.951 − 0.309i)39-s + ⋯

Functional equation

Λ(s)=(800s/2ΓR(s)L(s)=((0.712+0.701i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.712 + 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(800s/2ΓR(s)L(s)=((0.712+0.701i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.712 + 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 800800    =    25522^{5} \cdot 5^{2}
Sign: 0.712+0.701i0.712 + 0.701i
Analytic conductor: 3.715183.71518
Root analytic conductor: 3.715183.71518
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ800(509,)\chi_{800} (509, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 800, (0: ), 0.712+0.701i)(1,\ 800,\ (0:\ ),\ 0.712 + 0.701i)

Particular Values

L(12)L(\frac{1}{2}) \approx 2.119163092+0.8680521251i2.119163092 + 0.8680521251i
L(12)L(\frac12) \approx 2.119163092+0.8680521251i2.119163092 + 0.8680521251i
L(1)L(1) \approx 1.562089351+0.3184510603i1.562089351 + 0.3184510603i
L(1)L(1) \approx 1.562089351+0.3184510603i1.562089351 + 0.3184510603i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
good3 1+(0.987+0.156i)T 1 + (0.987 + 0.156i)T
7 1iT 1 - iT
11 1+(0.891+0.453i)T 1 + (0.891 + 0.453i)T
13 1+(0.8910.453i)T 1 + (0.891 - 0.453i)T
17 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
19 1+(0.156+0.987i)T 1 + (0.156 + 0.987i)T
23 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
29 1+(0.9870.156i)T 1 + (-0.987 - 0.156i)T
31 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
37 1+(0.4530.891i)T 1 + (-0.453 - 0.891i)T
41 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
43 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
47 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
53 1+(0.1560.987i)T 1 + (0.156 - 0.987i)T
59 1+(0.453+0.891i)T 1 + (0.453 + 0.891i)T
61 1+(0.453+0.891i)T 1 + (-0.453 + 0.891i)T
67 1+(0.156+0.987i)T 1 + (0.156 + 0.987i)T
71 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
73 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
79 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
83 1+(0.1560.987i)T 1 + (-0.156 - 0.987i)T
89 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
97 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.99103839136145855374437946097, −21.29978960633761672262209355037, −20.37032609790245466628607625342, −19.83148129991745219098464823658, −19.16399522131802084690712913583, −18.29130918021614001341387518062, −17.294886071844434974511277788573, −16.55409760905204961757968263321, −15.553693051999878286338472540, −14.81170284322817845454157385122, −13.814674528468108622665433734719, −13.506162789725863794422787221291, −12.60737592381962906760755834584, −11.25348660024489454527011193062, −10.751993555750342300541777866924, −9.4226131021966552978619365892, −8.9401760856586843467956161884, −8.03546653265548338936117712104, −6.93638866964943725122762640772, −6.54565522165457538581392016799, −4.922089417261864148203771613136, −3.82280109008155136313476690355, −3.420796603063674553948822597960, −1.94947026780164996108120762939, −1.06558360197959711751571670147, 1.46072217093745349782745739513, 2.3540593868332666957587272502, 3.37577786029322271577030244633, 4.20687635135974532312087790452, 5.35382985591893150926021764654, 6.38948031919337207804829824139, 7.39648127188514586461580084930, 8.35536862065451331755457165714, 9.10935944208441786018240100665, 9.60088603973476639913106484476, 10.83368398533913068481068333808, 11.71146167746012959772693834878, 12.78493219430439054791209030051, 13.30933809330217696750089094507, 14.59435955461620080320983567005, 14.81910679319313132166178546899, 15.8231550530063445965271237070, 16.46653349724972177081723449828, 17.80217861197258468864969172935, 18.4469527352740828785289134760, 19.19434663805197943821639236972, 20.02695561170507485573663997093, 20.76403706884909997679361943892, 21.36219333973167566543324488829, 22.44687871112083667462474939781

Graph of the ZZ-function along the critical line