L(s) = 1 | + (0.987 + 0.156i)3-s − i·7-s + (0.951 + 0.309i)9-s + (0.891 + 0.453i)11-s + (0.891 − 0.453i)13-s + (−0.809 − 0.587i)17-s + (0.156 + 0.987i)19-s + (−0.156 + 0.987i)21-s + (0.951 − 0.309i)23-s + (0.891 + 0.453i)27-s + (−0.987 − 0.156i)29-s + (−0.809 − 0.587i)31-s + (0.809 + 0.587i)33-s + (−0.453 − 0.891i)37-s + (0.951 − 0.309i)39-s + ⋯ |
L(s) = 1 | + (0.987 + 0.156i)3-s − i·7-s + (0.951 + 0.309i)9-s + (0.891 + 0.453i)11-s + (0.891 − 0.453i)13-s + (−0.809 − 0.587i)17-s + (0.156 + 0.987i)19-s + (−0.156 + 0.987i)21-s + (0.951 − 0.309i)23-s + (0.891 + 0.453i)27-s + (−0.987 − 0.156i)29-s + (−0.809 − 0.587i)31-s + (0.809 + 0.587i)33-s + (−0.453 − 0.891i)37-s + (0.951 − 0.309i)39-s + ⋯ |
Λ(s)=(=(800s/2ΓR(s)L(s)(0.712+0.701i)Λ(1−s)
Λ(s)=(=(800s/2ΓR(s)L(s)(0.712+0.701i)Λ(1−s)
Degree: |
1 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.712+0.701i
|
Analytic conductor: |
3.71518 |
Root analytic conductor: |
3.71518 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(509,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 800, (0: ), 0.712+0.701i)
|
Particular Values
L(21) |
≈ |
2.119163092+0.8680521251i |
L(21) |
≈ |
2.119163092+0.8680521251i |
L(1) |
≈ |
1.562089351+0.3184510603i |
L(1) |
≈ |
1.562089351+0.3184510603i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(0.987+0.156i)T |
| 7 | 1−iT |
| 11 | 1+(0.891+0.453i)T |
| 13 | 1+(0.891−0.453i)T |
| 17 | 1+(−0.809−0.587i)T |
| 19 | 1+(0.156+0.987i)T |
| 23 | 1+(0.951−0.309i)T |
| 29 | 1+(−0.987−0.156i)T |
| 31 | 1+(−0.809−0.587i)T |
| 37 | 1+(−0.453−0.891i)T |
| 41 | 1+(0.951+0.309i)T |
| 43 | 1+(−0.707+0.707i)T |
| 47 | 1+(−0.809+0.587i)T |
| 53 | 1+(0.156−0.987i)T |
| 59 | 1+(0.453+0.891i)T |
| 61 | 1+(−0.453+0.891i)T |
| 67 | 1+(0.156+0.987i)T |
| 71 | 1+(0.587+0.809i)T |
| 73 | 1+(0.951−0.309i)T |
| 79 | 1+(0.809−0.587i)T |
| 83 | 1+(−0.156−0.987i)T |
| 89 | 1+(0.951−0.309i)T |
| 97 | 1+(0.809−0.587i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.99103839136145855374437946097, −21.29978960633761672262209355037, −20.37032609790245466628607625342, −19.83148129991745219098464823658, −19.16399522131802084690712913583, −18.29130918021614001341387518062, −17.294886071844434974511277788573, −16.55409760905204961757968263321, −15.553693051999878286338472540, −14.81170284322817845454157385122, −13.814674528468108622665433734719, −13.506162789725863794422787221291, −12.60737592381962906760755834584, −11.25348660024489454527011193062, −10.751993555750342300541777866924, −9.4226131021966552978619365892, −8.9401760856586843467956161884, −8.03546653265548338936117712104, −6.93638866964943725122762640772, −6.54565522165457538581392016799, −4.922089417261864148203771613136, −3.82280109008155136313476690355, −3.420796603063674553948822597960, −1.94947026780164996108120762939, −1.06558360197959711751571670147,
1.46072217093745349782745739513, 2.3540593868332666957587272502, 3.37577786029322271577030244633, 4.20687635135974532312087790452, 5.35382985591893150926021764654, 6.38948031919337207804829824139, 7.39648127188514586461580084930, 8.35536862065451331755457165714, 9.10935944208441786018240100665, 9.60088603973476639913106484476, 10.83368398533913068481068333808, 11.71146167746012959772693834878, 12.78493219430439054791209030051, 13.30933809330217696750089094507, 14.59435955461620080320983567005, 14.81910679319313132166178546899, 15.8231550530063445965271237070, 16.46653349724972177081723449828, 17.80217861197258468864969172935, 18.4469527352740828785289134760, 19.19434663805197943821639236972, 20.02695561170507485573663997093, 20.76403706884909997679361943892, 21.36219333973167566543324488829, 22.44687871112083667462474939781