L(s) = 1 | + (−0.891 − 0.453i)3-s − i·7-s + (0.587 + 0.809i)9-s + (−0.156 − 0.987i)11-s + (−0.156 + 0.987i)13-s + (0.309 − 0.951i)17-s + (0.453 + 0.891i)19-s + (−0.453 + 0.891i)21-s + (0.587 − 0.809i)23-s + (−0.156 − 0.987i)27-s + (0.891 + 0.453i)29-s + (0.309 − 0.951i)31-s + (−0.309 + 0.951i)33-s + (−0.987 − 0.156i)37-s + (0.587 − 0.809i)39-s + ⋯ |
L(s) = 1 | + (−0.891 − 0.453i)3-s − i·7-s + (0.587 + 0.809i)9-s + (−0.156 − 0.987i)11-s + (−0.156 + 0.987i)13-s + (0.309 − 0.951i)17-s + (0.453 + 0.891i)19-s + (−0.453 + 0.891i)21-s + (0.587 − 0.809i)23-s + (−0.156 − 0.987i)27-s + (0.891 + 0.453i)29-s + (0.309 − 0.951i)31-s + (−0.309 + 0.951i)33-s + (−0.987 − 0.156i)37-s + (0.587 − 0.809i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.331 - 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.331 - 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5279318094 - 0.7449354096i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5279318094 - 0.7449354096i\) |
\(L(1)\) |
\(\approx\) |
\(0.7539374220 - 0.2927869470i\) |
\(L(1)\) |
\(\approx\) |
\(0.7539374220 - 0.2927869470i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-0.891 - 0.453i)T \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 + (-0.156 - 0.987i)T \) |
| 13 | \( 1 + (-0.156 + 0.987i)T \) |
| 17 | \( 1 + (0.309 - 0.951i)T \) |
| 19 | \( 1 + (0.453 + 0.891i)T \) |
| 23 | \( 1 + (0.587 - 0.809i)T \) |
| 29 | \( 1 + (0.891 + 0.453i)T \) |
| 31 | \( 1 + (0.309 - 0.951i)T \) |
| 37 | \( 1 + (-0.987 - 0.156i)T \) |
| 41 | \( 1 + (0.587 + 0.809i)T \) |
| 43 | \( 1 + (-0.707 - 0.707i)T \) |
| 47 | \( 1 + (0.309 + 0.951i)T \) |
| 53 | \( 1 + (0.453 - 0.891i)T \) |
| 59 | \( 1 + (0.987 + 0.156i)T \) |
| 61 | \( 1 + (-0.987 + 0.156i)T \) |
| 67 | \( 1 + (0.453 + 0.891i)T \) |
| 71 | \( 1 + (-0.951 + 0.309i)T \) |
| 73 | \( 1 + (0.587 - 0.809i)T \) |
| 79 | \( 1 + (-0.309 - 0.951i)T \) |
| 83 | \( 1 + (-0.453 - 0.891i)T \) |
| 89 | \( 1 + (0.587 - 0.809i)T \) |
| 97 | \( 1 + (-0.309 - 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.612531122665488343362348400855, −21.60448864778609257904451196299, −21.27475776071164834969761768815, −20.143916487543657554396839078354, −19.30756175251815256294377393992, −18.21861506951178502463793631117, −17.63770409281876040909238357828, −17.0986797060466236666072535697, −15.74891034959308498814999406947, −15.46677979412118070189147674352, −14.75575644045736597016059830279, −13.34266329326651104184909899846, −12.38752897563980931613339050428, −12.04089276669868275273035076653, −10.9307739846948891621898351189, −10.17756669251636438345763642291, −9.41451366278607075855043417324, −8.43337575869009700802013547891, −7.28498369335555412023319808746, −6.36902971844700910864884460611, −5.3423582875734425829334604991, −4.95267755020258788123865547920, −3.6534216664630974253575831599, −2.57089877929035843637937447098, −1.2193647102278179015678039881,
0.54773580249756213204996447375, 1.524110900524368834703853684490, 2.946837142117452838484802801991, 4.17003970807921295089267089222, 5.01239188959979762771775252863, 6.02625695187220645284402392633, 6.869535911940970050690070250202, 7.54478807044398288240494021908, 8.57171160547698379189708420160, 9.83328001696619630321382337347, 10.57006177213013339699075810434, 11.41426870806100928327485580876, 12.01605961325462581079750376572, 13.08855880258771015875902935652, 13.82904598407940585018760864264, 14.42265263961545236316626575359, 16.02704436689718849018928088703, 16.44345425494558599843890712655, 17.0559463385575655323361043547, 18.02830107514704893858629905186, 18.82005360636978312773057638253, 19.34979124558373517139559031990, 20.56606127747037414585296962670, 21.212732184154016016637029267659, 22.208076267817735491470388658168