L(s) = 1 | + (0.294 − 0.955i)3-s + (0.365 − 0.930i)5-s + (−0.826 − 0.563i)9-s + (0.563 + 0.826i)11-s + (−0.900 − 0.433i)13-s + (−0.781 − 0.623i)15-s + (−0.866 − 0.5i)17-s + (−0.294 − 0.955i)19-s + (0.988 + 0.149i)23-s + (−0.733 − 0.680i)25-s + (−0.781 + 0.623i)27-s + (0.149 + 0.988i)31-s + (0.955 − 0.294i)33-s + (−0.563 + 0.826i)37-s + (−0.680 + 0.733i)39-s + ⋯ |
L(s) = 1 | + (0.294 − 0.955i)3-s + (0.365 − 0.930i)5-s + (−0.826 − 0.563i)9-s + (0.563 + 0.826i)11-s + (−0.900 − 0.433i)13-s + (−0.781 − 0.623i)15-s + (−0.866 − 0.5i)17-s + (−0.294 − 0.955i)19-s + (0.988 + 0.149i)23-s + (−0.733 − 0.680i)25-s + (−0.781 + 0.623i)27-s + (0.149 + 0.988i)31-s + (0.955 − 0.294i)33-s + (−0.563 + 0.826i)37-s + (−0.680 + 0.733i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.214 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.214 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.2013500203 - 0.2502489205i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.2013500203 - 0.2502489205i\) |
\(L(1)\) |
\(\approx\) |
\(0.8434885419 - 0.4933431742i\) |
\(L(1)\) |
\(\approx\) |
\(0.8434885419 - 0.4933431742i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 29 | \( 1 \) |
good | 3 | \( 1 + (0.294 - 0.955i)T \) |
| 5 | \( 1 + (0.365 - 0.930i)T \) |
| 11 | \( 1 + (0.563 + 0.826i)T \) |
| 13 | \( 1 + (-0.900 - 0.433i)T \) |
| 17 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.294 - 0.955i)T \) |
| 23 | \( 1 + (0.988 + 0.149i)T \) |
| 31 | \( 1 + (0.149 + 0.988i)T \) |
| 37 | \( 1 + (-0.563 + 0.826i)T \) |
| 41 | \( 1 - iT \) |
| 43 | \( 1 + (0.781 + 0.623i)T \) |
| 47 | \( 1 + (-0.997 + 0.0747i)T \) |
| 53 | \( 1 + (-0.988 + 0.149i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.680 - 0.733i)T \) |
| 67 | \( 1 + (0.0747 - 0.997i)T \) |
| 71 | \( 1 + (-0.900 - 0.433i)T \) |
| 73 | \( 1 + (0.930 - 0.365i)T \) |
| 79 | \( 1 + (-0.563 + 0.826i)T \) |
| 83 | \( 1 + (-0.222 + 0.974i)T \) |
| 89 | \( 1 + (0.930 + 0.365i)T \) |
| 97 | \( 1 + (0.974 + 0.222i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.42150261289116433951716986287, −21.729835182140519134977456824603, −21.26897847976813111594894412165, −20.264462903691636261201523374047, −19.23949929522886831582388098777, −18.93858115005090590133640370998, −17.5544732759578352101041496086, −16.98159787636682462685423503337, −16.15132945560390418196962283623, −15.12013327136661836456762476771, −14.57490205608871363592308422044, −13.98793299078833623271614216060, −12.977966235983025325789269254806, −11.628280467793767420680636593084, −11.00539496018060137758414687282, −10.238990738999469995274517290244, −9.431687799385288336914770190450, −8.68068365772875435907132825438, −7.60340466819269968345812464390, −6.49529656782462054229292715869, −5.75960176092118596984524849992, −4.58155115788246871320582449542, −3.699977793270190239068792096159, −2.83168589902527916335503368815, −1.874269123939786087565544868003,
0.0654011970912102267379290472, 1.16745060385258429266162570767, 2.087048844481937085056758479845, 3.014832928964070791887704789928, 4.56288639310792955926530500185, 5.17712790279458094321215529846, 6.48267463915958129421807572792, 7.10071308817008724886481550173, 8.068728270474876747056677704223, 9.07693680592202444959066548266, 9.447960229322068067906931248234, 10.83040604131497864131624877806, 11.95785021237972086377497893386, 12.50746285729018526835201687308, 13.217041213984985325235593247943, 13.952322102164775488361876619718, 14.90607650649822718938203530521, 15.70166686396715700066119950847, 17.02474187942670876683266145942, 17.43206920721050289638344226107, 18.04421560401213393481837495145, 19.3062024795148015275899100818, 19.82489611418460774844597646402, 20.423393458801744613169937667713, 21.3294345606345833524948951874