L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.5 + 0.866i)5-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)11-s + 13-s + 15-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s + 27-s + (−0.5 − 0.866i)31-s + (−0.5 + 0.866i)33-s + (0.5 − 0.866i)37-s + (−0.5 − 0.866i)39-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.5 + 0.866i)5-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)11-s + 13-s + 15-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s + 27-s + (−0.5 − 0.866i)31-s + (−0.5 + 0.866i)33-s + (0.5 − 0.866i)37-s + (−0.5 − 0.866i)39-s + ⋯ |
Λ(s)=(=(812s/2ΓR(s+1)L(s)(0.0633+0.997i)Λ(1−s)
Λ(s)=(=(812s/2ΓR(s+1)L(s)(0.0633+0.997i)Λ(1−s)
Degree: |
1 |
Conductor: |
812
= 22⋅7⋅29
|
Sign: |
0.0633+0.997i
|
Analytic conductor: |
87.2615 |
Root analytic conductor: |
87.2615 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ812(347,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 812, (1: ), 0.0633+0.997i)
|
Particular Values
L(21) |
≈ |
0.5614307232+0.5269315854i |
L(21) |
≈ |
0.5614307232+0.5269315854i |
L(1) |
≈ |
0.7622891505−0.04837501029i |
L(1) |
≈ |
0.7622891505−0.04837501029i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 29 | 1 |
good | 3 | 1+(−0.5−0.866i)T |
| 5 | 1+(−0.5+0.866i)T |
| 11 | 1+(−0.5−0.866i)T |
| 13 | 1+T |
| 17 | 1+(0.5+0.866i)T |
| 19 | 1+(−0.5+0.866i)T |
| 23 | 1+(0.5−0.866i)T |
| 31 | 1+(−0.5−0.866i)T |
| 37 | 1+(0.5−0.866i)T |
| 41 | 1−T |
| 43 | 1+T |
| 47 | 1+(−0.5+0.866i)T |
| 53 | 1+(−0.5−0.866i)T |
| 59 | 1+(0.5+0.866i)T |
| 61 | 1+(0.5−0.866i)T |
| 67 | 1+(0.5+0.866i)T |
| 71 | 1−T |
| 73 | 1+(0.5+0.866i)T |
| 79 | 1+(−0.5+0.866i)T |
| 83 | 1−T |
| 89 | 1+(0.5−0.866i)T |
| 97 | 1−T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.7267848234480448493959290193, −20.92917918928380709349241018532, −20.46385658263112819996434619679, −19.68546646122173039980168173429, −18.50780150007973560439502629491, −17.65285249572490961715142807781, −16.92307197783916533730766831446, −16.053769579142177118419468870518, −15.595280353514834723129808807351, −14.857804729738535901168565535761, −13.57934277252861401849496782550, −12.76978498163492718902711956187, −11.85962970111694143983973585703, −11.21935508024867871057625449605, −10.28748889191084313145769100451, −9.35012802136372246049413529517, −8.74202434043651251302462235256, −7.66032280070924937583572514383, −6.618144552882920705372503587326, −5.35836300048889519827661101812, −4.88831328511795127593378235429, −3.96939109969750602074579080470, −3.01292502119438915290991084737, −1.369325513078973092591180748131, −0.23672897035108542670976918796,
0.901741145461681564109977165088, 2.134796386401284095072344529669, 3.189873451847520553731392764676, 4.131591258507628024807962832607, 5.685721218087872046500027122864, 6.14501502186902630980790664087, 7.072119620461204177541936033200, 8.05567457432857238888659380189, 8.48710927969818409423688878459, 10.16444443363676246717531377312, 10.97165235507909395918590580471, 11.34265339761659150088475716043, 12.51811921834330966918660352797, 13.10198155884214055925903880554, 14.135087144184321118827765036335, 14.75974700068244382151211647568, 15.93546504068247136034561643774, 16.57052068018117053904820681492, 17.52200771247713770098369882006, 18.55938183299981002899191093007, 18.7564893664518066416978526123, 19.46858579700034480521072858080, 20.645110761429366718731919224653, 21.52203450487988214860795006572, 22.44318403196456501640993915798