L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.5 + 0.866i)5-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)11-s + 13-s + 15-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s + 27-s + (−0.5 − 0.866i)31-s + (−0.5 + 0.866i)33-s + (0.5 − 0.866i)37-s + (−0.5 − 0.866i)39-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.5 + 0.866i)5-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)11-s + 13-s + 15-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s + 27-s + (−0.5 − 0.866i)31-s + (−0.5 + 0.866i)33-s + (0.5 − 0.866i)37-s + (−0.5 − 0.866i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0633 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0633 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5614307232 + 0.5269315854i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5614307232 + 0.5269315854i\) |
\(L(1)\) |
\(\approx\) |
\(0.7622891505 - 0.04837501029i\) |
\(L(1)\) |
\(\approx\) |
\(0.7622891505 - 0.04837501029i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 29 | \( 1 \) |
good | 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + (0.5 + 0.866i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.7267848234480448493959290193, −20.92917918928380709349241018532, −20.46385658263112819996434619679, −19.68546646122173039980168173429, −18.50780150007973560439502629491, −17.65285249572490961715142807781, −16.92307197783916533730766831446, −16.053769579142177118419468870518, −15.595280353514834723129808807351, −14.857804729738535901168565535761, −13.57934277252861401849496782550, −12.76978498163492718902711956187, −11.85962970111694143983973585703, −11.21935508024867871057625449605, −10.28748889191084313145769100451, −9.35012802136372246049413529517, −8.74202434043651251302462235256, −7.66032280070924937583572514383, −6.618144552882920705372503587326, −5.35836300048889519827661101812, −4.88831328511795127593378235429, −3.96939109969750602074579080470, −3.01292502119438915290991084737, −1.369325513078973092591180748131, −0.23672897035108542670976918796,
0.901741145461681564109977165088, 2.134796386401284095072344529669, 3.189873451847520553731392764676, 4.131591258507628024807962832607, 5.685721218087872046500027122864, 6.14501502186902630980790664087, 7.072119620461204177541936033200, 8.05567457432857238888659380189, 8.48710927969818409423688878459, 10.16444443363676246717531377312, 10.97165235507909395918590580471, 11.34265339761659150088475716043, 12.51811921834330966918660352797, 13.10198155884214055925903880554, 14.135087144184321118827765036335, 14.75974700068244382151211647568, 15.93546504068247136034561643774, 16.57052068018117053904820681492, 17.52200771247713770098369882006, 18.55938183299981002899191093007, 18.7564893664518066416978526123, 19.46858579700034480521072858080, 20.645110761429366718731919224653, 21.52203450487988214860795006572, 22.44318403196456501640993915798