L(s) = 1 | + (−0.433 + 0.900i)3-s + (−0.222 − 0.974i)5-s + (−0.623 − 0.781i)9-s + (0.781 + 0.623i)11-s + (0.623 − 0.781i)13-s + (0.974 + 0.222i)15-s + i·17-s + (0.433 + 0.900i)19-s + (0.222 − 0.974i)23-s + (−0.900 + 0.433i)25-s + (0.974 − 0.222i)27-s + (−0.974 + 0.222i)31-s + (−0.900 + 0.433i)33-s + (−0.781 + 0.623i)37-s + (0.433 + 0.900i)39-s + ⋯ |
L(s) = 1 | + (−0.433 + 0.900i)3-s + (−0.222 − 0.974i)5-s + (−0.623 − 0.781i)9-s + (0.781 + 0.623i)11-s + (0.623 − 0.781i)13-s + (0.974 + 0.222i)15-s + i·17-s + (0.433 + 0.900i)19-s + (0.222 − 0.974i)23-s + (−0.900 + 0.433i)25-s + (0.974 − 0.222i)27-s + (−0.974 + 0.222i)31-s + (−0.900 + 0.433i)33-s + (−0.781 + 0.623i)37-s + (0.433 + 0.900i)39-s + ⋯ |
Λ(s)=(=(812s/2ΓR(s+1)L(s)(0.965+0.259i)Λ(1−s)
Λ(s)=(=(812s/2ΓR(s+1)L(s)(0.965+0.259i)Λ(1−s)
Degree: |
1 |
Conductor: |
812
= 22⋅7⋅29
|
Sign: |
0.965+0.259i
|
Analytic conductor: |
87.2615 |
Root analytic conductor: |
87.2615 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ812(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 812, (1: ), 0.965+0.259i)
|
Particular Values
L(21) |
≈ |
1.630135477+0.2154626732i |
L(21) |
≈ |
1.630135477+0.2154626732i |
L(1) |
≈ |
0.9517013155+0.1125079299i |
L(1) |
≈ |
0.9517013155+0.1125079299i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 29 | 1 |
good | 3 | 1+(−0.433+0.900i)T |
| 5 | 1+(−0.222−0.974i)T |
| 11 | 1+(0.781+0.623i)T |
| 13 | 1+(0.623−0.781i)T |
| 17 | 1+iT |
| 19 | 1+(0.433+0.900i)T |
| 23 | 1+(0.222−0.974i)T |
| 31 | 1+(−0.974+0.222i)T |
| 37 | 1+(−0.781+0.623i)T |
| 41 | 1−iT |
| 43 | 1+(−0.974−0.222i)T |
| 47 | 1+(0.781+0.623i)T |
| 53 | 1+(−0.222−0.974i)T |
| 59 | 1+T |
| 61 | 1+(0.433−0.900i)T |
| 67 | 1+(0.623+0.781i)T |
| 71 | 1+(0.623−0.781i)T |
| 73 | 1+(0.974+0.222i)T |
| 79 | 1+(−0.781+0.623i)T |
| 83 | 1+(−0.900+0.433i)T |
| 89 | 1+(0.974−0.222i)T |
| 97 | 1+(0.433+0.900i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.06373270275110158215859425656, −21.50768423163882883011852780701, −20.085418132290635607191237349684, −19.45700869126552828798916148233, −18.65295085115692363420027029819, −18.19723910011048586381359105988, −17.30631796676732836276863951771, −16.42483939510701565516799618612, −15.61465102541750096889534751825, −14.436461793834737673431615218808, −13.8401106721862322508649432871, −13.200446837023743422030781150120, −11.8065315575150958921966069630, −11.49173918967544873029126655650, −10.82903393262953512803218288949, −9.49981341588200535103852218835, −8.63052848714155998272674339019, −7.4220283957171582704277513750, −6.93669312462765441070534037066, −6.15435656219510719410677503908, −5.20191614023857814348396612416, −3.811739396806747443364326330948, −2.895546728958327065127181332202, −1.78824100785608635936829710988, −0.66277461938204213484040665615,
0.640761363806244289401308861897, 1.737459500603156902096997814080, 3.51416723036408021611930144244, 4.030442097774613574119199487224, 5.07063064338541377597921173049, 5.74945148099635242897293173170, 6.779812453157478333523251943283, 8.19610417345402361098239993320, 8.753730355483468377529513756114, 9.72128118014095509238769344812, 10.44255049226571541503059308743, 11.37405786684351988856078589735, 12.32407242843906342773967149447, 12.76112609130609427775531299476, 14.10547061196898733580185734609, 14.9639395124007628628815807153, 15.67614354128674981451963602598, 16.467020243205754984008123161215, 17.100404999514990534994772822278, 17.748837843124435759106281932461, 18.89950215808269555013194782935, 20.066479488649052735621867963456, 20.44505138894909160048816166017, 21.1369265451978418027215415112, 22.157576563497201904882402886895