Properties

Label 1-812-812.499-r1-0-0
Degree 11
Conductor 812812
Sign 0.9540.297i0.954 - 0.297i
Analytic cond. 87.261587.2615
Root an. cond. 87.261587.2615
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.826 − 0.563i)3-s + (−0.733 + 0.680i)5-s + (0.365 − 0.930i)9-s + (0.365 + 0.930i)11-s + (0.623 − 0.781i)13-s + (−0.222 + 0.974i)15-s + (0.5 − 0.866i)17-s + (0.826 + 0.563i)19-s + (−0.955 + 0.294i)23-s + (0.0747 − 0.997i)25-s + (−0.222 − 0.974i)27-s + (0.955 + 0.294i)31-s + (0.826 + 0.563i)33-s + (−0.365 + 0.930i)37-s + (0.0747 − 0.997i)39-s + ⋯
L(s)  = 1  + (0.826 − 0.563i)3-s + (−0.733 + 0.680i)5-s + (0.365 − 0.930i)9-s + (0.365 + 0.930i)11-s + (0.623 − 0.781i)13-s + (−0.222 + 0.974i)15-s + (0.5 − 0.866i)17-s + (0.826 + 0.563i)19-s + (−0.955 + 0.294i)23-s + (0.0747 − 0.997i)25-s + (−0.222 − 0.974i)27-s + (0.955 + 0.294i)31-s + (0.826 + 0.563i)33-s + (−0.365 + 0.930i)37-s + (0.0747 − 0.997i)39-s + ⋯

Functional equation

Λ(s)=(812s/2ΓR(s+1)L(s)=((0.9540.297i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.954 - 0.297i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(812s/2ΓR(s+1)L(s)=((0.9540.297i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.954 - 0.297i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 812812    =    227292^{2} \cdot 7 \cdot 29
Sign: 0.9540.297i0.954 - 0.297i
Analytic conductor: 87.261587.2615
Root analytic conductor: 87.261587.2615
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ812(499,)\chi_{812} (499, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 812, (1: ), 0.9540.297i)(1,\ 812,\ (1:\ ),\ 0.954 - 0.297i)

Particular Values

L(12)L(\frac{1}{2}) \approx 2.7265475450.4147982639i2.726547545 - 0.4147982639i
L(12)L(\frac12) \approx 2.7265475450.4147982639i2.726547545 - 0.4147982639i
L(1)L(1) \approx 1.3893669110.1297510615i1.389366911 - 0.1297510615i
L(1)L(1) \approx 1.3893669110.1297510615i1.389366911 - 0.1297510615i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
7 1 1
29 1 1
good3 1+(0.8260.563i)T 1 + (0.826 - 0.563i)T
5 1+(0.733+0.680i)T 1 + (-0.733 + 0.680i)T
11 1+(0.365+0.930i)T 1 + (0.365 + 0.930i)T
13 1+(0.6230.781i)T 1 + (0.623 - 0.781i)T
17 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
19 1+(0.826+0.563i)T 1 + (0.826 + 0.563i)T
23 1+(0.955+0.294i)T 1 + (-0.955 + 0.294i)T
31 1+(0.955+0.294i)T 1 + (0.955 + 0.294i)T
37 1+(0.365+0.930i)T 1 + (-0.365 + 0.930i)T
41 1T 1 - T
43 1+(0.222+0.974i)T 1 + (-0.222 + 0.974i)T
47 1+(0.9880.149i)T 1 + (-0.988 - 0.149i)T
53 1+(0.955+0.294i)T 1 + (0.955 + 0.294i)T
59 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
61 1+(0.07470.997i)T 1 + (-0.0747 - 0.997i)T
67 1+(0.9880.149i)T 1 + (0.988 - 0.149i)T
71 1+(0.623+0.781i)T 1 + (-0.623 + 0.781i)T
73 1+(0.733+0.680i)T 1 + (0.733 + 0.680i)T
79 1+(0.3650.930i)T 1 + (0.365 - 0.930i)T
83 1+(0.9000.433i)T 1 + (0.900 - 0.433i)T
89 1+(0.7330.680i)T 1 + (0.733 - 0.680i)T
97 1+(0.9000.433i)T 1 + (0.900 - 0.433i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.86587984861963865332594839827, −21.156575861197836374925507628810, −20.51892257140349797036893994675, −19.54450610472888516514435326224, −19.27118621858261309689931265739, −18.24580710644913079974657333189, −16.86088385774775593734465769311, −16.32804004470722078326176694749, −15.685901770809493621688839787452, −14.84448156046016310095889233299, −13.874730198332575062470189005921, −13.37857670449376956727966472873, −12.149807804489142525100743785188, −11.439591733900581070532484162711, −10.47110899193200014264522695355, −9.470037473400824048255609494390, −8.60357100479400321634514511025, −8.24486900573394730958789489836, −7.15582523325989211672234061788, −5.90025392504481826444585671499, −4.83312926533137042298968957708, −3.866480477588496926452703722074, −3.42045676557138154394556492886, −1.98096251130142595595409509013, −0.812529138021652058626242530540, 0.775231516543160490828359536146, 1.91715896736592926078089560612, 3.12417312305440307980595321507, 3.59401536914996353251529231094, 4.82776114654238516346829317172, 6.23492370986691074818535571075, 7.03452034317596677388981649101, 7.823617134747396485410335593363, 8.35949103306071637429090908039, 9.6838495962995398098586087620, 10.20169303164633159532856176039, 11.66813891786236382102360711692, 12.0279718291459754206675207694, 13.092155111346840538806568905341, 14.00666304774486857926457641071, 14.599326730564468220755704779894, 15.47035662020913656481763417988, 16.00977829572899664576199788330, 17.44155179919502326308911130538, 18.28691948926630720000477867207, 18.648478230660666733814832027868, 19.74489405778603086239741842226, 20.19940586953527790841148971153, 20.89579007652447330922431130910, 22.14716998000314920373055170496

Graph of the ZZ-function along the critical line