L(s) = 1 | + (0.365 − 0.930i)3-s + (0.0747 − 0.997i)5-s + (−0.733 − 0.680i)9-s + (−0.733 + 0.680i)11-s + (−0.222 − 0.974i)13-s + (−0.900 − 0.433i)15-s + (0.5 + 0.866i)17-s + (0.365 + 0.930i)19-s + (−0.826 + 0.563i)23-s + (−0.988 − 0.149i)25-s + (−0.900 + 0.433i)27-s + (0.826 + 0.563i)31-s + (0.365 + 0.930i)33-s + (0.733 + 0.680i)37-s + (−0.988 − 0.149i)39-s + ⋯ |
L(s) = 1 | + (0.365 − 0.930i)3-s + (0.0747 − 0.997i)5-s + (−0.733 − 0.680i)9-s + (−0.733 + 0.680i)11-s + (−0.222 − 0.974i)13-s + (−0.900 − 0.433i)15-s + (0.5 + 0.866i)17-s + (0.365 + 0.930i)19-s + (−0.826 + 0.563i)23-s + (−0.988 − 0.149i)25-s + (−0.900 + 0.433i)27-s + (0.826 + 0.563i)31-s + (0.365 + 0.930i)33-s + (0.733 + 0.680i)37-s + (−0.988 − 0.149i)39-s + ⋯ |
Λ(s)=(=(812s/2ΓR(s+1)L(s)(0.868+0.495i)Λ(1−s)
Λ(s)=(=(812s/2ΓR(s+1)L(s)(0.868+0.495i)Λ(1−s)
Degree: |
1 |
Conductor: |
812
= 22⋅7⋅29
|
Sign: |
0.868+0.495i
|
Analytic conductor: |
87.2615 |
Root analytic conductor: |
87.2615 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ812(515,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 812, (1: ), 0.868+0.495i)
|
Particular Values
L(21) |
≈ |
1.157116793+0.3066771027i |
L(21) |
≈ |
1.157116793+0.3066771027i |
L(1) |
≈ |
0.9618155649−0.3387357033i |
L(1) |
≈ |
0.9618155649−0.3387357033i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 29 | 1 |
good | 3 | 1+(0.365−0.930i)T |
| 5 | 1+(0.0747−0.997i)T |
| 11 | 1+(−0.733+0.680i)T |
| 13 | 1+(−0.222−0.974i)T |
| 17 | 1+(0.5+0.866i)T |
| 19 | 1+(0.365+0.930i)T |
| 23 | 1+(−0.826+0.563i)T |
| 31 | 1+(0.826+0.563i)T |
| 37 | 1+(0.733+0.680i)T |
| 41 | 1−T |
| 43 | 1+(−0.900−0.433i)T |
| 47 | 1+(0.955+0.294i)T |
| 53 | 1+(0.826+0.563i)T |
| 59 | 1+(0.5+0.866i)T |
| 61 | 1+(0.988−0.149i)T |
| 67 | 1+(−0.955+0.294i)T |
| 71 | 1+(0.222+0.974i)T |
| 73 | 1+(−0.0747−0.997i)T |
| 79 | 1+(−0.733−0.680i)T |
| 83 | 1+(−0.623+0.781i)T |
| 89 | 1+(−0.0747+0.997i)T |
| 97 | 1+(−0.623+0.781i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.83986450336793566571265071537, −21.34281928725954118947070983827, −20.46659995011333042675411131165, −19.57177616798320493839340911873, −18.76299250716330825337713051930, −18.123532848096043559237107755911, −16.96148989309037261054270004903, −16.157640146151526090328022125805, −15.5421573385822174080854668934, −14.62648966161123877390662565364, −13.98219524523299449431595170486, −13.372584468879923150198429723137, −11.71754734427192945182957451268, −11.28588560059807040478278294252, −10.255427989378642418591442124477, −9.74386893748589616661887396430, −8.73809266367126292353427247163, −7.80334426052189856592216487677, −6.861585322745611437276133781516, −5.7989708514131534660788510386, −4.85982096989502093032043383284, −3.85579130642493413910565102861, −2.891854362469155586215469581556, −2.281033773287808471785618752090, −0.269133663218478554476002590574,
1.010824976621437964928428016554, 1.82109214591164914004312918502, 2.934957320943303076902507826467, 4.060712958360472685867587740169, 5.345665919296863168960412938124, 5.89483277045147913326220334045, 7.198069986508898805243303126869, 8.08100560510246256870804552350, 8.39202900054123252549923173746, 9.71954774151181446586627119898, 10.33298479156680456623487155579, 11.93931069948053760596633754059, 12.28618407446166880280667512994, 13.12666208138409189867909948868, 13.69526133153391532398898275564, 14.82001900096597238485008886830, 15.522731844593202020513289437539, 16.60524698345379115765813942432, 17.427063271508101418310722067805, 18.02553615724017754305255742283, 18.90724995407710376293630561038, 19.84364487334867736951785783388, 20.36687078465946943449183209049, 21.00292541345298733893641736105, 22.108332847259386421738051724866