Properties

Label 1-812-812.515-r1-0-0
Degree 11
Conductor 812812
Sign 0.868+0.495i0.868 + 0.495i
Analytic cond. 87.261587.2615
Root an. cond. 87.261587.2615
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.365 − 0.930i)3-s + (0.0747 − 0.997i)5-s + (−0.733 − 0.680i)9-s + (−0.733 + 0.680i)11-s + (−0.222 − 0.974i)13-s + (−0.900 − 0.433i)15-s + (0.5 + 0.866i)17-s + (0.365 + 0.930i)19-s + (−0.826 + 0.563i)23-s + (−0.988 − 0.149i)25-s + (−0.900 + 0.433i)27-s + (0.826 + 0.563i)31-s + (0.365 + 0.930i)33-s + (0.733 + 0.680i)37-s + (−0.988 − 0.149i)39-s + ⋯
L(s)  = 1  + (0.365 − 0.930i)3-s + (0.0747 − 0.997i)5-s + (−0.733 − 0.680i)9-s + (−0.733 + 0.680i)11-s + (−0.222 − 0.974i)13-s + (−0.900 − 0.433i)15-s + (0.5 + 0.866i)17-s + (0.365 + 0.930i)19-s + (−0.826 + 0.563i)23-s + (−0.988 − 0.149i)25-s + (−0.900 + 0.433i)27-s + (0.826 + 0.563i)31-s + (0.365 + 0.930i)33-s + (0.733 + 0.680i)37-s + (−0.988 − 0.149i)39-s + ⋯

Functional equation

Λ(s)=(812s/2ΓR(s+1)L(s)=((0.868+0.495i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.868 + 0.495i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(812s/2ΓR(s+1)L(s)=((0.868+0.495i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.868 + 0.495i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 812812    =    227292^{2} \cdot 7 \cdot 29
Sign: 0.868+0.495i0.868 + 0.495i
Analytic conductor: 87.261587.2615
Root analytic conductor: 87.261587.2615
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ812(515,)\chi_{812} (515, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 812, (1: ), 0.868+0.495i)(1,\ 812,\ (1:\ ),\ 0.868 + 0.495i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.157116793+0.3066771027i1.157116793 + 0.3066771027i
L(12)L(\frac12) \approx 1.157116793+0.3066771027i1.157116793 + 0.3066771027i
L(1)L(1) \approx 0.96181556490.3387357033i0.9618155649 - 0.3387357033i
L(1)L(1) \approx 0.96181556490.3387357033i0.9618155649 - 0.3387357033i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
7 1 1
29 1 1
good3 1+(0.3650.930i)T 1 + (0.365 - 0.930i)T
5 1+(0.07470.997i)T 1 + (0.0747 - 0.997i)T
11 1+(0.733+0.680i)T 1 + (-0.733 + 0.680i)T
13 1+(0.2220.974i)T 1 + (-0.222 - 0.974i)T
17 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
19 1+(0.365+0.930i)T 1 + (0.365 + 0.930i)T
23 1+(0.826+0.563i)T 1 + (-0.826 + 0.563i)T
31 1+(0.826+0.563i)T 1 + (0.826 + 0.563i)T
37 1+(0.733+0.680i)T 1 + (0.733 + 0.680i)T
41 1T 1 - T
43 1+(0.9000.433i)T 1 + (-0.900 - 0.433i)T
47 1+(0.955+0.294i)T 1 + (0.955 + 0.294i)T
53 1+(0.826+0.563i)T 1 + (0.826 + 0.563i)T
59 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
61 1+(0.9880.149i)T 1 + (0.988 - 0.149i)T
67 1+(0.955+0.294i)T 1 + (-0.955 + 0.294i)T
71 1+(0.222+0.974i)T 1 + (0.222 + 0.974i)T
73 1+(0.07470.997i)T 1 + (-0.0747 - 0.997i)T
79 1+(0.7330.680i)T 1 + (-0.733 - 0.680i)T
83 1+(0.623+0.781i)T 1 + (-0.623 + 0.781i)T
89 1+(0.0747+0.997i)T 1 + (-0.0747 + 0.997i)T
97 1+(0.623+0.781i)T 1 + (-0.623 + 0.781i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.83986450336793566571265071537, −21.34281928725954118947070983827, −20.46659995011333042675411131165, −19.57177616798320493839340911873, −18.76299250716330825337713051930, −18.123532848096043559237107755911, −16.96148989309037261054270004903, −16.157640146151526090328022125805, −15.5421573385822174080854668934, −14.62648966161123877390662565364, −13.98219524523299449431595170486, −13.372584468879923150198429723137, −11.71754734427192945182957451268, −11.28588560059807040478278294252, −10.255427989378642418591442124477, −9.74386893748589616661887396430, −8.73809266367126292353427247163, −7.80334426052189856592216487677, −6.861585322745611437276133781516, −5.7989708514131534660788510386, −4.85982096989502093032043383284, −3.85579130642493413910565102861, −2.891854362469155586215469581556, −2.281033773287808471785618752090, −0.269133663218478554476002590574, 1.010824976621437964928428016554, 1.82109214591164914004312918502, 2.934957320943303076902507826467, 4.060712958360472685867587740169, 5.345665919296863168960412938124, 5.89483277045147913326220334045, 7.198069986508898805243303126869, 8.08100560510246256870804552350, 8.39202900054123252549923173746, 9.71954774151181446586627119898, 10.33298479156680456623487155579, 11.93931069948053760596633754059, 12.28618407446166880280667512994, 13.12666208138409189867909948868, 13.69526133153391532398898275564, 14.82001900096597238485008886830, 15.522731844593202020513289437539, 16.60524698345379115765813942432, 17.427063271508101418310722067805, 18.02553615724017754305255742283, 18.90724995407710376293630561038, 19.84364487334867736951785783388, 20.36687078465946943449183209049, 21.00292541345298733893641736105, 22.108332847259386421738051724866

Graph of the ZZ-function along the critical line