L(s) = 1 | + (−0.848 + 0.529i)2-s + (0.438 − 0.898i)4-s + (−0.173 − 0.984i)5-s + (−0.241 − 0.970i)7-s + (0.104 + 0.994i)8-s + (0.669 + 0.743i)10-s + (−0.241 − 0.970i)11-s + (−0.0348 + 0.999i)13-s + (0.719 + 0.694i)14-s + (−0.615 − 0.788i)16-s + (−0.809 + 0.587i)17-s + (−0.978 + 0.207i)19-s + (−0.961 − 0.275i)20-s + (0.719 + 0.694i)22-s + (−0.719 − 0.694i)23-s + ⋯ |
L(s) = 1 | + (−0.848 + 0.529i)2-s + (0.438 − 0.898i)4-s + (−0.173 − 0.984i)5-s + (−0.241 − 0.970i)7-s + (0.104 + 0.994i)8-s + (0.669 + 0.743i)10-s + (−0.241 − 0.970i)11-s + (−0.0348 + 0.999i)13-s + (0.719 + 0.694i)14-s + (−0.615 − 0.788i)16-s + (−0.809 + 0.587i)17-s + (−0.978 + 0.207i)19-s + (−0.961 − 0.275i)20-s + (0.719 + 0.694i)22-s + (−0.719 − 0.694i)23-s + ⋯ |
Λ(s)=(=(837s/2ΓR(s)L(s)(−0.892+0.451i)Λ(1−s)
Λ(s)=(=(837s/2ΓR(s)L(s)(−0.892+0.451i)Λ(1−s)
Degree: |
1 |
Conductor: |
837
= 33⋅31
|
Sign: |
−0.892+0.451i
|
Analytic conductor: |
3.88701 |
Root analytic conductor: |
3.88701 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ837(158,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 837, (0: ), −0.892+0.451i)
|
Particular Values
L(21) |
≈ |
0.01320357563−0.05534814102i |
L(21) |
≈ |
0.01320357563−0.05534814102i |
L(1) |
≈ |
0.5145006917−0.06716390970i |
L(1) |
≈ |
0.5145006917−0.06716390970i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 31 | 1 |
good | 2 | 1+(−0.848+0.529i)T |
| 5 | 1+(−0.173−0.984i)T |
| 7 | 1+(−0.241−0.970i)T |
| 11 | 1+(−0.241−0.970i)T |
| 13 | 1+(−0.0348+0.999i)T |
| 17 | 1+(−0.809+0.587i)T |
| 19 | 1+(−0.978+0.207i)T |
| 23 | 1+(−0.719−0.694i)T |
| 29 | 1+(0.848−0.529i)T |
| 37 | 1−T |
| 41 | 1+(0.615−0.788i)T |
| 43 | 1+(0.882+0.469i)T |
| 47 | 1+(−0.990+0.139i)T |
| 53 | 1+(0.913+0.406i)T |
| 59 | 1+(−0.848−0.529i)T |
| 61 | 1+(−0.173+0.984i)T |
| 67 | 1+(−0.939−0.342i)T |
| 71 | 1+(0.104+0.994i)T |
| 73 | 1+(0.809+0.587i)T |
| 79 | 1+(−0.559+0.829i)T |
| 83 | 1+(−0.882−0.469i)T |
| 89 | 1+(0.913−0.406i)T |
| 97 | 1+(0.961+0.275i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.464297348667512822180238502141, −21.737643669223398667248692964422, −20.99866163554544100341904313977, −19.873741623184091585287189830802, −19.507134702211754560703948071028, −18.480777452541181858929138283929, −17.91478360784701619894076851349, −17.497481880432273764120220114181, −16.03262182766665340192127578176, −15.47661936913240241315583589659, −14.85383999522331194240028695076, −13.495236608109418990234858293647, −12.5513688998137817450194684347, −11.94280534667594344536964107242, −10.98801986887121132660550744401, −10.30169652161681537759587105751, −9.542290328820200836839582699822, −8.60859666566960486560871203136, −7.72413794615767060388004658939, −6.90906177217075606634950044923, −6.06320315030348964145511622932, −4.676655272992044921674490299459, −3.40425152971745331065741739642, −2.603133739552966828319757913447, −1.92699600627733946459874146097,
0.03556352940731866620592175108, 1.166009831083655647227985579041, 2.25907636675544369895028009909, 3.973901681442472920288294385270, 4.65815609417460631185709780873, 5.96417143598963849084489205330, 6.58424695128921777209031321130, 7.66852003288424891237097630744, 8.5071279243167779204508198173, 8.99105643449363683699987285111, 10.119314531333021171134545283, 10.794055553493702552061231557474, 11.69529116937705029199867480593, 12.80729488622099737184391020739, 13.74757742842049151914353152243, 14.37358694428547353867614777352, 15.69267830537105717309653942981, 16.15354607094195185202468463157, 16.95399552462713206527867519121, 17.33588104127579180407045598984, 18.50631877763605254935628554997, 19.54760173822077480400895827910, 19.62564654927164749445663366095, 20.82991564564129741769009528563, 21.35118933578023495473917306961