L(s) = 1 | + (−0.961 + 0.275i)2-s + (0.848 − 0.529i)4-s + (0.939 − 0.342i)5-s + (0.990 + 0.139i)7-s + (−0.669 + 0.743i)8-s + (−0.809 + 0.587i)10-s + (−0.374 − 0.927i)11-s + (0.241 + 0.970i)13-s + (−0.990 + 0.139i)14-s + (0.438 − 0.898i)16-s + (0.669 − 0.743i)17-s + (−0.809 + 0.587i)19-s + (0.615 − 0.788i)20-s + (0.615 + 0.788i)22-s + (−0.374 + 0.927i)23-s + ⋯ |
L(s) = 1 | + (−0.961 + 0.275i)2-s + (0.848 − 0.529i)4-s + (0.939 − 0.342i)5-s + (0.990 + 0.139i)7-s + (−0.669 + 0.743i)8-s + (−0.809 + 0.587i)10-s + (−0.374 − 0.927i)11-s + (0.241 + 0.970i)13-s + (−0.990 + 0.139i)14-s + (0.438 − 0.898i)16-s + (0.669 − 0.743i)17-s + (−0.809 + 0.587i)19-s + (0.615 − 0.788i)20-s + (0.615 + 0.788i)22-s + (−0.374 + 0.927i)23-s + ⋯ |
Λ(s)=(=(837s/2ΓR(s)L(s)(0.995+0.0956i)Λ(1−s)
Λ(s)=(=(837s/2ΓR(s)L(s)(0.995+0.0956i)Λ(1−s)
Degree: |
1 |
Conductor: |
837
= 33⋅31
|
Sign: |
0.995+0.0956i
|
Analytic conductor: |
3.88701 |
Root analytic conductor: |
3.88701 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ837(272,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 837, (0: ), 0.995+0.0956i)
|
Particular Values
L(21) |
≈ |
1.308977071+0.06272982273i |
L(21) |
≈ |
1.308977071+0.06272982273i |
L(1) |
≈ |
0.9597817256+0.04667932987i |
L(1) |
≈ |
0.9597817256+0.04667932987i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 31 | 1 |
good | 2 | 1+(−0.961+0.275i)T |
| 5 | 1+(0.939−0.342i)T |
| 7 | 1+(0.990+0.139i)T |
| 11 | 1+(−0.374−0.927i)T |
| 13 | 1+(0.241+0.970i)T |
| 17 | 1+(0.669−0.743i)T |
| 19 | 1+(−0.809+0.587i)T |
| 23 | 1+(−0.374+0.927i)T |
| 29 | 1+(0.961−0.275i)T |
| 37 | 1+(0.5+0.866i)T |
| 41 | 1+(0.997+0.0697i)T |
| 43 | 1+(−0.961+0.275i)T |
| 47 | 1+(0.997−0.0697i)T |
| 53 | 1+(0.669−0.743i)T |
| 59 | 1+(0.241+0.970i)T |
| 61 | 1+(−0.766+0.642i)T |
| 67 | 1+(0.766+0.642i)T |
| 71 | 1+(−0.309−0.951i)T |
| 73 | 1+(−0.669−0.743i)T |
| 79 | 1+(−0.848−0.529i)T |
| 83 | 1+(−0.719−0.694i)T |
| 89 | 1+(−0.978+0.207i)T |
| 97 | 1+(0.990+0.139i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.67933171823147737500917793431, −21.301719791551694911314751499457, −20.43752842528848990413907761143, −19.87875184101492680506153929319, −18.623545342933129585990994483915, −18.12310451654155405796228726662, −17.40147779397279443916292128337, −17.0184754215994238275520489746, −15.715878486788223584647268794874, −14.938372452345259413297269845625, −14.21107932539415463602430040369, −12.90264895895999041405401262048, −12.41100540869465074252813631671, −11.12118811055281862114104144147, −10.468535499796464138834704522050, −10.02908761498626654707016302797, −8.85772804713676935547897161178, −8.12189550704482818964258620921, −7.29197527490627781003217358230, −6.326133763296656304961745335691, −5.37481321408790289971634708362, −4.16118009040429345527805088816, −2.73065535259713192616794885544, −2.078034906042168375495715857818, −1.04942473605270413535647725092,
1.068204817903956836946934003567, 1.85725609466855173252023105067, 2.85088614158494892235445924809, 4.51887298448954183978387089116, 5.59537096326462089058024352408, 6.11416143612085923359945925109, 7.27736403482996896674523007202, 8.2743935140179306592568047365, 8.78831516636145951290958557537, 9.73741386682866635428715537908, 10.48123586915522774203480163335, 11.42239318598306443384814532492, 12.051265090674565491149562025641, 13.516891625180643105737583646096, 14.12589101495956303039566198982, 14.910135228615913844986453375918, 16.07399277497871958950907045673, 16.633817743746120757902475374756, 17.37078611749928338024726784543, 18.18964320405166473105283365497, 18.68896911777200964880981444829, 19.60711500604620614713929847826, 20.73239108861813419885293987425, 21.18835431515370714320865251511, 21.699273582267264771084222110350