L(s) = 1 | + (−0.961 + 0.275i)2-s + (0.848 − 0.529i)4-s + (0.939 − 0.342i)5-s + (0.990 + 0.139i)7-s + (−0.669 + 0.743i)8-s + (−0.809 + 0.587i)10-s + (−0.374 − 0.927i)11-s + (0.241 + 0.970i)13-s + (−0.990 + 0.139i)14-s + (0.438 − 0.898i)16-s + (0.669 − 0.743i)17-s + (−0.809 + 0.587i)19-s + (0.615 − 0.788i)20-s + (0.615 + 0.788i)22-s + (−0.374 + 0.927i)23-s + ⋯ |
L(s) = 1 | + (−0.961 + 0.275i)2-s + (0.848 − 0.529i)4-s + (0.939 − 0.342i)5-s + (0.990 + 0.139i)7-s + (−0.669 + 0.743i)8-s + (−0.809 + 0.587i)10-s + (−0.374 − 0.927i)11-s + (0.241 + 0.970i)13-s + (−0.990 + 0.139i)14-s + (0.438 − 0.898i)16-s + (0.669 − 0.743i)17-s + (−0.809 + 0.587i)19-s + (0.615 − 0.788i)20-s + (0.615 + 0.788i)22-s + (−0.374 + 0.927i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.308977071 + 0.06272982273i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.308977071 + 0.06272982273i\) |
\(L(1)\) |
\(\approx\) |
\(0.9597817256 + 0.04667932987i\) |
\(L(1)\) |
\(\approx\) |
\(0.9597817256 + 0.04667932987i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.961 + 0.275i)T \) |
| 5 | \( 1 + (0.939 - 0.342i)T \) |
| 7 | \( 1 + (0.990 + 0.139i)T \) |
| 11 | \( 1 + (-0.374 - 0.927i)T \) |
| 13 | \( 1 + (0.241 + 0.970i)T \) |
| 17 | \( 1 + (0.669 - 0.743i)T \) |
| 19 | \( 1 + (-0.809 + 0.587i)T \) |
| 23 | \( 1 + (-0.374 + 0.927i)T \) |
| 29 | \( 1 + (0.961 - 0.275i)T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.997 + 0.0697i)T \) |
| 43 | \( 1 + (-0.961 + 0.275i)T \) |
| 47 | \( 1 + (0.997 - 0.0697i)T \) |
| 53 | \( 1 + (0.669 - 0.743i)T \) |
| 59 | \( 1 + (0.241 + 0.970i)T \) |
| 61 | \( 1 + (-0.766 + 0.642i)T \) |
| 67 | \( 1 + (0.766 + 0.642i)T \) |
| 71 | \( 1 + (-0.309 - 0.951i)T \) |
| 73 | \( 1 + (-0.669 - 0.743i)T \) |
| 79 | \( 1 + (-0.848 - 0.529i)T \) |
| 83 | \( 1 + (-0.719 - 0.694i)T \) |
| 89 | \( 1 + (-0.978 + 0.207i)T \) |
| 97 | \( 1 + (0.990 + 0.139i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.67933171823147737500917793431, −21.301719791551694911314751499457, −20.43752842528848990413907761143, −19.87875184101492680506153929319, −18.623545342933129585990994483915, −18.12310451654155405796228726662, −17.40147779397279443916292128337, −17.0184754215994238275520489746, −15.715878486788223584647268794874, −14.938372452345259413297269845625, −14.21107932539415463602430040369, −12.90264895895999041405401262048, −12.41100540869465074252813631671, −11.12118811055281862114104144147, −10.468535499796464138834704522050, −10.02908761498626654707016302797, −8.85772804713676935547897161178, −8.12189550704482818964258620921, −7.29197527490627781003217358230, −6.326133763296656304961745335691, −5.37481321408790289971634708362, −4.16118009040429345527805088816, −2.73065535259713192616794885544, −2.078034906042168375495715857818, −1.04942473605270413535647725092,
1.068204817903956836946934003567, 1.85725609466855173252023105067, 2.85088614158494892235445924809, 4.51887298448954183978387089116, 5.59537096326462089058024352408, 6.11416143612085923359945925109, 7.27736403482996896674523007202, 8.2743935140179306592568047365, 8.78831516636145951290958557537, 9.73741386682866635428715537908, 10.48123586915522774203480163335, 11.42239318598306443384814532492, 12.051265090674565491149562025641, 13.516891625180643105737583646096, 14.12589101495956303039566198982, 14.910135228615913844986453375918, 16.07399277497871958950907045673, 16.633817743746120757902475374756, 17.37078611749928338024726784543, 18.18964320405166473105283365497, 18.68896911777200964880981444829, 19.60711500604620614713929847826, 20.73239108861813419885293987425, 21.18835431515370714320865251511, 21.699273582267264771084222110350