L(s) = 1 | + (−0.851 − 0.524i)2-s + (0.913 + 0.406i)3-s + (0.449 + 0.893i)4-s + (0.483 + 0.875i)5-s + (−0.564 − 0.825i)6-s + (0.0855 − 0.996i)8-s + (0.669 + 0.743i)9-s + (0.0475 − 0.998i)10-s + (0.0475 + 0.998i)12-s + (−0.254 − 0.967i)13-s + (0.0855 + 0.996i)15-s + (−0.595 + 0.803i)16-s + (0.640 + 0.768i)17-s + (−0.179 − 0.983i)18-s + (−0.969 + 0.244i)19-s + (−0.564 + 0.825i)20-s + ⋯ |
L(s) = 1 | + (−0.851 − 0.524i)2-s + (0.913 + 0.406i)3-s + (0.449 + 0.893i)4-s + (0.483 + 0.875i)5-s + (−0.564 − 0.825i)6-s + (0.0855 − 0.996i)8-s + (0.669 + 0.743i)9-s + (0.0475 − 0.998i)10-s + (0.0475 + 0.998i)12-s + (−0.254 − 0.967i)13-s + (0.0855 + 0.996i)15-s + (−0.595 + 0.803i)16-s + (0.640 + 0.768i)17-s + (−0.179 − 0.983i)18-s + (−0.969 + 0.244i)19-s + (−0.564 + 0.825i)20-s + ⋯ |
Λ(s)=(=(847s/2ΓR(s)L(s)(0.328+0.944i)Λ(1−s)
Λ(s)=(=(847s/2ΓR(s)L(s)(0.328+0.944i)Λ(1−s)
Degree: |
1 |
Conductor: |
847
= 7⋅112
|
Sign: |
0.328+0.944i
|
Analytic conductor: |
3.93345 |
Root analytic conductor: |
3.93345 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ847(102,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 847, (0: ), 0.328+0.944i)
|
Particular Values
L(21) |
≈ |
1.146432296+0.8147062550i |
L(21) |
≈ |
1.146432296+0.8147062550i |
L(1) |
≈ |
1.034388148+0.2313611660i |
L(1) |
≈ |
1.034388148+0.2313611660i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 11 | 1 |
good | 2 | 1+(−0.851−0.524i)T |
| 3 | 1+(0.913+0.406i)T |
| 5 | 1+(0.483+0.875i)T |
| 13 | 1+(−0.254−0.967i)T |
| 17 | 1+(0.640+0.768i)T |
| 19 | 1+(−0.969+0.244i)T |
| 23 | 1+(0.580+0.814i)T |
| 29 | 1+(−0.466+0.884i)T |
| 31 | 1+(−0.935−0.353i)T |
| 37 | 1+(0.988+0.151i)T |
| 41 | 1+(0.610−0.791i)T |
| 43 | 1+(−0.654+0.755i)T |
| 47 | 1+(−0.179+0.983i)T |
| 53 | 1+(−0.595−0.803i)T |
| 59 | 1+(0.380−0.924i)T |
| 61 | 1+(0.879+0.475i)T |
| 67 | 1+(0.723+0.690i)T |
| 71 | 1+(0.897−0.441i)T |
| 73 | 1+(0.861+0.508i)T |
| 79 | 1+(0.123−0.992i)T |
| 83 | 1+(−0.736+0.676i)T |
| 89 | 1+(−0.786−0.618i)T |
| 97 | 1+(0.516+0.856i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.57102861807976203465531566481, −20.92926679116217684849775058294, −20.18786291186045043650770690735, −19.5160681479416275974126436630, −18.67462173684180124880436864700, −18.14263412422489992544869918766, −16.95320772548779876540025489895, −16.61956878172481077492606927249, −15.573465789371760414829994193156, −14.674282586424450864453537912121, −14.06508484429390729941723635157, −13.169213817650933458528747843761, −12.29535638150461573830771616149, −11.243965593516015509316464796487, −9.963855970018970030265382782249, −9.37227117888218451020526348936, −8.7442857592042625111226217792, −7.99630642948219589097833446202, −7.05636817619625936914479892970, −6.3083646261598136705789614028, −5.16251453698499483225381565078, −4.172958950204818492915511571367, −2.54284837032369662457122532370, −1.84088650071945608332616260458, −0.75051995551404658526664952707,
1.50013315774420348029533978616, 2.38712120849452165773719946220, 3.234012259143567857061608195509, 3.88475675111187864074511742368, 5.43603678883238852798637213804, 6.67121682892140839395235084668, 7.6300617295948618048922809428, 8.19888758856529170507903656177, 9.29760216517226931340407490902, 9.88149203115666877584770238633, 10.6552937906794124819173715971, 11.19495639479496203665000382373, 12.767183601712785514548148583932, 13.080528933534611460787119478511, 14.46480362296007217036480750863, 14.917248525040608912402384406110, 15.83565733395032801576432279038, 16.8541691544441763186154705564, 17.58745443189778268365487064270, 18.49082929494988956749225718194, 19.12726823302753649063728627670, 19.767806341713894377461310540992, 20.6234966107134950993356518254, 21.374461211962857708557494529889, 21.878229715298383859875163239800