L(s) = 1 | + (−0.0665 − 0.997i)2-s + (−0.104 − 0.994i)3-s + (−0.991 + 0.132i)4-s + (0.953 + 0.299i)5-s + (−0.985 + 0.170i)6-s + (0.198 + 0.980i)8-s + (−0.978 + 0.207i)9-s + (0.235 − 0.971i)10-s + (0.235 + 0.971i)12-s + (−0.564 + 0.825i)13-s + (0.198 − 0.980i)15-s + (0.964 − 0.263i)16-s + (0.797 − 0.603i)17-s + (0.272 + 0.962i)18-s + (−0.290 − 0.956i)19-s + (−0.985 − 0.170i)20-s + ⋯ |
L(s) = 1 | + (−0.0665 − 0.997i)2-s + (−0.104 − 0.994i)3-s + (−0.991 + 0.132i)4-s + (0.953 + 0.299i)5-s + (−0.985 + 0.170i)6-s + (0.198 + 0.980i)8-s + (−0.978 + 0.207i)9-s + (0.235 − 0.971i)10-s + (0.235 + 0.971i)12-s + (−0.564 + 0.825i)13-s + (0.198 − 0.980i)15-s + (0.964 − 0.263i)16-s + (0.797 − 0.603i)17-s + (0.272 + 0.962i)18-s + (−0.290 − 0.956i)19-s + (−0.985 − 0.170i)20-s + ⋯ |
Λ(s)=(=(847s/2ΓR(s)L(s)(−0.987−0.160i)Λ(1−s)
Λ(s)=(=(847s/2ΓR(s)L(s)(−0.987−0.160i)Λ(1−s)
Degree: |
1 |
Conductor: |
847
= 7⋅112
|
Sign: |
−0.987−0.160i
|
Analytic conductor: |
3.93345 |
Root analytic conductor: |
3.93345 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ847(135,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 847, (0: ), −0.987−0.160i)
|
Particular Values
L(21) |
≈ |
0.09433433251−1.168074204i |
L(21) |
≈ |
0.09433433251−1.168074204i |
L(1) |
≈ |
0.6558956118−0.7230463185i |
L(1) |
≈ |
0.6558956118−0.7230463185i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 11 | 1 |
good | 2 | 1+(−0.0665−0.997i)T |
| 3 | 1+(−0.104−0.994i)T |
| 5 | 1+(0.953+0.299i)T |
| 13 | 1+(−0.564+0.825i)T |
| 17 | 1+(0.797−0.603i)T |
| 19 | 1+(−0.290−0.956i)T |
| 23 | 1+(0.0475−0.998i)T |
| 29 | 1+(0.0855+0.996i)T |
| 31 | 1+(−0.851−0.524i)T |
| 37 | 1+(−0.179−0.983i)T |
| 41 | 1+(−0.466−0.884i)T |
| 43 | 1+(0.415−0.909i)T |
| 47 | 1+(0.272−0.962i)T |
| 53 | 1+(0.964+0.263i)T |
| 59 | 1+(−0.532−0.846i)T |
| 61 | 1+(−0.830−0.556i)T |
| 67 | 1+(−0.786−0.618i)T |
| 71 | 1+(0.516−0.856i)T |
| 73 | 1+(0.988+0.151i)T |
| 79 | 1+(−0.595−0.803i)T |
| 83 | 1+(0.774+0.633i)T |
| 89 | 1+(0.981+0.189i)T |
| 97 | 1+(−0.736−0.676i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.583204590592315604685203676035, −21.62939469601030354067734477273, −21.26868418069694639167787363758, −20.21767062860426974746097510574, −19.2380083810820274770140477147, −18.11850038564353388043011728420, −17.3851825664412521057467251648, −16.85342840595065530651661660110, −16.21012606496967330441279949619, −15.17186081517965203034906779378, −14.68697954971784757044409268087, −13.858526017866827605522670485633, −12.97700624134185534945839400729, −12.05979941865864796014017529860, −10.56591770743444808742406383607, −9.97308997370384758592304271413, −9.40344525226186500567932635414, −8.41844725614018821655112487412, −7.66997281116707744182355481161, −6.24200064616522909525285650191, −5.673844295318320006402989782097, −5.01594118440145088693191846074, −4.01248457283735095613197836962, −2.96337792975192107913685585206, −1.294153804963531686984862638282,
0.58364736251418421544149147888, 1.892787751310534355250441594165, 2.35527649486907041445913016765, 3.38959871787065130568270516312, 4.85853297534358733869962550732, 5.59868582499626356084096332255, 6.74920186971080341165625147393, 7.48590399276768510848923349798, 8.83475168956555821972318222699, 9.275890608563308912319443339986, 10.4451705311890263333531253291, 11.08084363872407409073102769701, 12.1307410049745291914374182884, 12.61494043299252954234477212334, 13.61631229210950690367582503426, 14.071630993784185486046251753924, 14.80796562538434459880911212667, 16.67129537616724818461475970842, 17.10784814231719475732423177655, 18.11806439130499038742459929766, 18.492645596775941774074342235319, 19.25751756469223436960575982183, 20.089872871994184093060262201897, 20.87943308682482323676395378661, 21.7906798374168932068203234084