L(s) = 1 | + (−0.683 + 0.730i)2-s + (0.669 − 0.743i)3-s + (−0.0665 − 0.997i)4-s + (0.988 + 0.151i)5-s + (0.0855 + 0.996i)6-s + (0.774 + 0.633i)8-s + (−0.104 − 0.994i)9-s + (−0.786 + 0.618i)10-s + (−0.786 − 0.618i)12-s + (−0.466 − 0.884i)13-s + (0.774 − 0.633i)15-s + (−0.991 + 0.132i)16-s + (−0.948 + 0.318i)17-s + (0.797 + 0.603i)18-s + (−0.595 + 0.803i)19-s + (0.0855 − 0.996i)20-s + ⋯ |
L(s) = 1 | + (−0.683 + 0.730i)2-s + (0.669 − 0.743i)3-s + (−0.0665 − 0.997i)4-s + (0.988 + 0.151i)5-s + (0.0855 + 0.996i)6-s + (0.774 + 0.633i)8-s + (−0.104 − 0.994i)9-s + (−0.786 + 0.618i)10-s + (−0.786 − 0.618i)12-s + (−0.466 − 0.884i)13-s + (0.774 − 0.633i)15-s + (−0.991 + 0.132i)16-s + (−0.948 + 0.318i)17-s + (0.797 + 0.603i)18-s + (−0.595 + 0.803i)19-s + (0.0855 − 0.996i)20-s + ⋯ |
Λ(s)=(=(847s/2ΓR(s)L(s)(0.516−0.856i)Λ(1−s)
Λ(s)=(=(847s/2ΓR(s)L(s)(0.516−0.856i)Λ(1−s)
Degree: |
1 |
Conductor: |
847
= 7⋅112
|
Sign: |
0.516−0.856i
|
Analytic conductor: |
3.93345 |
Root analytic conductor: |
3.93345 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ847(137,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 847, (0: ), 0.516−0.856i)
|
Particular Values
L(21) |
≈ |
1.182074432−0.6677018385i |
L(21) |
≈ |
1.182074432−0.6677018385i |
L(1) |
≈ |
1.038752476−0.1282409171i |
L(1) |
≈ |
1.038752476−0.1282409171i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 11 | 1 |
good | 2 | 1+(−0.683+0.730i)T |
| 3 | 1+(0.669−0.743i)T |
| 5 | 1+(0.988+0.151i)T |
| 13 | 1+(−0.466−0.884i)T |
| 17 | 1+(−0.948+0.318i)T |
| 19 | 1+(−0.595+0.803i)T |
| 23 | 1+(0.723−0.690i)T |
| 29 | 1+(−0.736−0.676i)T |
| 31 | 1+(0.272−0.962i)T |
| 37 | 1+(0.640−0.768i)T |
| 41 | 1+(0.516−0.856i)T |
| 43 | 1+(0.841−0.540i)T |
| 47 | 1+(0.797−0.603i)T |
| 53 | 1+(−0.991−0.132i)T |
| 59 | 1+(0.483−0.875i)T |
| 61 | 1+(−0.290+0.956i)T |
| 67 | 1+(−0.327+0.945i)T |
| 71 | 1+(−0.870+0.491i)T |
| 73 | 1+(0.997+0.0760i)T |
| 79 | 1+(0.449−0.893i)T |
| 83 | 1+(0.941+0.336i)T |
| 89 | 1+(−0.995−0.0950i)T |
| 97 | 1+(−0.362+0.931i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.85215039497246089525655639250, −21.351363819603573019478202383945, −20.7042485363184483850700519376, −19.83925515327542910956139467092, −19.29819517052097552031184756633, −18.30096652012942372614088077951, −17.43553089613525511787189734998, −16.80282363613506858852369227665, −16.01619260514573552679065896831, −15.000549804268979524533549835358, −13.97594090207049092584599337924, −13.361126443521248719286252752699, −12.552534105479863487467442423512, −11.19515343624099967569144900765, −10.779301111777640917745329862235, −9.60710930291099303888291772709, −9.28821758463427364593640915173, −8.638776367091651269315344389778, −7.4621197565496955947619953254, −6.51392421950951670079793210021, −4.94638489589876355673876718142, −4.370901592507739195017242821764, −3.04889859069782836409190985805, −2.37799381191003378836886730586, −1.45655759029389456014163683302,
0.69657545709015400867443705266, 1.9932421312229758631007448238, 2.53127476445803019503982945599, 4.16549958716592629325272729915, 5.5766982884543843512967803008, 6.16790305286732220401223083892, 7.044650321106447829626780380540, 7.83384435538471429350374429227, 8.712013775336942322932200800423, 9.38231263309050898841716190280, 10.24241935885045306279264928607, 11.0638185157884591618079535348, 12.57080453266962071623009017929, 13.215569361139047321997105440381, 14.02937418141726234257053463833, 14.83081889226652492368188791047, 15.28306694098959067683571207499, 16.61843056317151507676114463729, 17.45707206656524747918508379668, 17.80170870262302028419418441805, 18.82768254920812793691851740921, 19.21386163596359549752745585152, 20.37864966348259949075584790958, 20.78586223079728633980015746817, 22.17801573775370000058596318015